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ABSTRACT

As a first step toward generalizing reversible thermodynamics from the case
of a homogeneous system to that of a system whose local velocity may be a
function of its position in space-time, a variational principle is derived for
relativistic reversible adiabatic flow of a compressible fluid. This is done by
identifying the thermodynamic internal energy function for a given sample
of the fluid with its Hamiltonian function, and then invoking the canonical
equations of motion. Both in order to bring the rest-mass energy into the
formalism, as well as to provide a means of labelling and identifying different
samples of fluid, it is necessary to introduce a new thermodynamic variable,
which is just the molar initial momentum vector of the fluid sample in question.
It turns out that this vector is intimately related to the vorticity of the flow, and
if it had been omitted, the formalism would have been implicitly limited to a
description of vorticity-free flow.

The Lagrangian density, as seen in the fixed laboratory frame, that results
from identifying the Hamiltonian with the thermodynamic internal energy
is just the thermodynamic pressure. This must be regarded as a function of the
generalized coordinates that are canonical to the particle density, the entropy
density, and the initial momentum vector (all regarded as generalized momenta).
More precisely, the pressure is a function of the proper-time derivatives of these
coordinates. These time derivatives are equal to the molar free enthalpy, the
rest-temperature, and the initial velocity respectively. Because, in the laboratory
frame, the proper-time derivative of a variable is defined as the contraction of
the velocity four-vector with the four-gradient of the variable, the pressure is
also a function of the fluid velocity.

This variational principle yields the correct form of the stress-energy tensor
for reversible adiabatic flow of a compressible fluid (together with the necessary
statements of particle and entropy conservation), and automatically gives the
expression for the solution of Euler's equation of motion for the fluid in terms

of the four-gradients of the generalized coordinates.

INTRODUCTION

The discussion of this article is in the spirit of well-known attempts1 to
bring continuum mechanics within the framework of thermodynamics by
treating local velocity as just one more thermodynamic variable to be taken
into account with all the others. The basic approach consists of identifying
the appropriate thermal energy function with the Hamiltonian of the system,
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and the corresponding canonical equations with the mechanical and thermo-
dynamical equations of motion of the system.

This general approach was first applied to the case of a homogeneous system
by Helmholtz2 in 1886, and adapted to relativity theory in 1907 by Planck3.
Planck's theory was developed before four-dimensional tensor analysis
and the modern covariance concept had fully evolved. Consequently,
although it was form-invariant under Lorentz transformations, it fell
completely outside the framework of tensor analysis, which meant that, for
all but the simplest applications, it was completely unworkable. (Reviews of
both the early4 and recent5 history of relativistic thermodynamics are
available elsewhere.)

In 1939 Van Dantzig6 constructed a manifestly covariant thermodynamics,
and applied it to fluids7, but his work failed to lift the obscurity surrounding
the intimate three-way relation that binds together thermodynamics, fluid
dynamics, and the canonical formalism. This relation stems from the fact
that, if the right choice of variables is made, the thermodynamic energy
density function plays the role of Hamiltonian density, and the thermo-
dynamic pressure plays the role of Lagrangian density.

The identification of pressure with Lagrangian density had already been
made in 1908 by Hargreaves8 for the case of non-relativistic potential flow.
Van Dantzig7 generalized this identification to the relativistic case, but,
although the point was not explicitly made, his proof was likewise limited to
the case of potential flow, because he did not include the variables that are
necessary for a completely general description of vorticity. (Others have since
given relativistic variational principles that are free of this limitation, but
these principles all involve the imposition of constraints, and do not make
the identification of the Lagrangian density with the thermodynamic
pressure.)

Notation
The analysis will be carried out entirely within the framework of special

relativity. Boldface Latin or Greek letters will designate four-vectors, and
light-face characters will designate scalars. A superior dot will designate
differentiation with respect to proper-time t, i.e. the time derivative as seen
by an observer moving with the fluid. Contraction of two four-vectors will
be indicated as the dot product of the corresponding boldface characters.
Indices will be explicitly indicated only in the case of two-index tensors,
and when indices are indicated, the summation convention will be used.

Intensive thermodynamic quantities, and extensive quantities that are
referred to one mole of the fluid, will be designated by capital letters. Thus T
and P are temperature and pressure respectively, and V, S, U, H and G
are the molar volume, entropy, energy, enthalpy and Gibbs function (free
enthalpy) respectively. The number of moles per unit volume is n 1/V.
Extensive quantities referred to unit volume (not unit mass!) of the fixed
laboratory frame will be designated by the appropriate lower-case Roman
character. For example, u nU is the internal energy per unit volume in the
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laboratory frame. Densities referred to the convected fluid frame that is
based on coordinate planes embedded in the fluid and moving with it will
be designated by the corresponding primed letter. Thus n' and u' are respec-
tively the molar density and molar energy density referred to the convected
frame.

ONE-DIMENSIONAL CANONICAL FORMALISM
From the point of view of an observer who remains stationary with respect

to a given sample of fluid and refers all measurements to the convected
frame, everything can be described as a function of a single variable—
the proper-time t of the sample of fluid under study. Because the fluid
appears to remain at rest, the fluid velocity v does not enter into such a
description. When the canonical formalism derived from such an approach
is referred to the fixed laboratory frame, however, proper-time differentiation
must be defined as d/dt v where is the four-gradient operator, and
this brings v into the formalism. Thus the development of the one-dimensional
canonical formalism referred to the convected fluid frame is the first step
in arriving at the desired variational principle referred to the laboratory
frame.

In reversible adiabatic flow the molar entropy and the total number
of particles in the fluid are conserved quantities. Our approach will consist of
expressing these two conservation laws in terms of two scalar constants
of motion of the fluid. The internal energy will then be written as a function
of these two constants of motion and of the proper time. Identifying the inter-
nal energy with the Hamiltonian of the system and the constants of motion
with generalized momentum coordinates, we are led to the canonical equa-
tions of motion.

In order to arrive at the desired statement of conservation of particles,
we first note that the molar rest-volume V (not to be confused with the
Lorentz-contracted molar volume V' = V/F where F [1 — (v/c)2]

—

may be written V = JV' where V' = (V)0 is the molar volume referred to
the convected frame, which is a constant of motion, and is equal to the initial
value of Vat t = 0, and J is the function oft that describes the time-dependence
of V that results from compression or expansion of the fluid. The Lorentz-
contracted molar volume is thus V* = V/F = (J/F) V'. Because intervals
of laboratory-time dt and proper-time dt are related by dt F dt we have:

dY" cdtdV* = cFdx(J/F)dV' = J(cd'rdV') (1)

where d is the element of four-volume in the laboratory frame and cdt dy'
is the corresponding four-volume element in the convected frame. Thus J
is just the Jacobian of the transformation between laboratory coordinates
and convected coordinates.

Using V = JV', the thermodynamic equation dU =T dS — P dV would
become

dU TdS — (PJ)dV' — (PV'.)dr (2)
where = 1" = 0 and U = U(S, V', t) would be the thermodynamic
potential that we could identify with the Hamiltonian. However, because
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we are dealing with a continuum, it is more appropriate to work with
densities rather than with molar quantities. For this reason, we eliminate
V', U and S in favour of n', u' and s' where

1/V' = f/v = Jn; u' n'U; s' n'S

Making these substitutions in 2, we find

du' = Tds' + Gdn' — (PY)dt

where G = U + pv — TS is the molar Gibbs function. Thus u' = u'(s', n', t)
is a function of two constants of motion and of the proper-time.

Before identifying u' with the Hamiltonian of the system, we note that equa-
tion 4 has two deficiencies which luckily can both be removed by the addition
of a single term. First, from the relativistic point of view, the rest-mass
energy density m'c2 n'Mc2 (where M is the molar rest-mass) should not be
isolated from all other contributions to the energy density. Hence u' should
be replaced by the total energy density ü' n'U that includes the rest-mass
energy density.

The second deficiency of equation 4 arises from the fact that, if we are to
describe a fluid rather than just isolated moles of gas that in no way interact
with one another, then we must in some way introduce into the formalism
parameters that label and identify each mole of gas and distinguish it from
all others. Because these parameters will enter into the formalism, they must
have a physical significance that is essential to the description of the fluid.
Both of these requirements, labelling and physical significance, are satisfied
by the initial momentum vector K = (Mv)= which is the momentum
possessed by the mole of gas at = 0. In doing this we are effectively postula-
ting that the inability to distinguish between two or more moles of gas that
would result if their K-vectors were all equal, represents a physical degeneracy
with observable consequences. (We shall, in fact, see that such a degeneracy
corresponds to vorticity-free flow.) Thus K, like the molar entropy S. is a
preserved fossil of the initial conditions of the fluid. The vector K is normalized
to the molar mass M, i.e. K (KK)4 = Mc, and so M K/c can be used
as the definition of molar mass, and U becomes U U + c(K . K)4. There
exists an alternative procedure for relating U and U that is not only more
general, but also closer to the spirit of thermodynamical formalism. We
may regard U = U(S, n, K) as the basic thermodynamic potential and S, n
(or V), and K as the basic variables. We then define M as Mc2 (U/3K) K.
This definition is consistent with U = U(S, n) + c(K K)4 where c(K K)4 =
Mc2, but it is more general, and is applicable regardless of the K-dependence
of U. Using this more general definition of M, we define the purely thermal
energy function U as:

U U—(aU/aK)•K U-Mc2

Although relation 5 represents the most general way of defining U and M,
in this paper we shall assume that the K-dependence of U is given by
c(K K)4 = Mc2 where M is a constant parameter. In such a case

= cK/K = K/M v where v (v) = is the initial velocity of the
mole of gas in question at r = 0.
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If K' n'K is the initial momentum density referred to the convected
frame, the density relation that corresponds to relation 5 is

U' ii'— V K' fl' — m'c2 where v ü7K' = ôU/K (6)

Thus we see that the definition of u' in terms of ü' and ,c' (or of U in terms of
U and K) amounts to a Legendre transformation that replaces the variable
K' (or K) with v 3u'i'/aK' = 3Ufi3K.

From expressions 4 and 6 we obtain the basic thermodynamic equation of
the fluid

dfl' = Tds' + Gdn' + vdK' — (P.f)dx (7)

This is to be compared with the well-known expression for the differential
of the Hamiltonian E = E(p, q, r):

dE = (aE/p)q,. dp + (E/q) dq + (E/8t), qdi
q

(8)
= 4 dp — dq — (aL/&r)q di

p q

where the Lagrangian L is defined as follows:

L = L(4, q, x) >p(iE/p)q — E (9)

We now identify ü' with E. Note that although ü' = n'U is a density, it
does in fact represent the energy of a fixed number of particles, namely the
number contained in unit volume of the convected frame, and so there is
no inconsistency in regarding it as the Hamiltonian of a definite dynamical
system.

It turns out that, for consistency, it is necessary to identify the thermo-
dynamic variables s', n' and K' with generalized momenta, rather than with
generalized coordinates. Doing this, and designating the coordinates q
that are conjugate to the momenta p = (s', 11', K') by q = (, â, ) respectively,
comparison of 7 and 8 yields the following equations:

(10)
The fact that ü' is independent of the coordinates 5, and yields the
desired equations of motion:

= ñ' = k' = 0, which implies 1 = 0 (11)
the last equation resulting from K' = n'K and ñ' = tc' = 0.

From definition 9 we find:

L p(au'/ap) — ii' = n'(G + ST + K v — U)
(12)= n'(H — U) = n'PV = (n'/n) P = JP

where use has been made of 3 and 5. SincedJ/d'r = J/&r, equations
12, together with the last equation of 10, yield (5P/t)q, = 0, which means
that P = P(, , ) is a function of the generalized velocities = T,= G, = v alone, and not an explicit function of r. For example, in the
case of a perfect gas, for which P = nRT, where R is the gas constant and
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y = constant is the ratio of specific heats, the functional form of P is

P = P0(T/T0)'1 exp {[G + Mc(vv)]/RT}
where P0 and T0 are constants.

Because L = JP, the Lagrangian equations of motion are:

d [(JP)/öc] /clt = 8(JP)/q or d [J(P/4)]/dr 0
where use has been made of the fact that P is independent of the qs, and J
is an explicit function of t, being independent of the qs and 4s. To evaluate

we first note that:

P=n(H— U)=n(G+ST+Kv— U)=nG+sT +KV—ui (15)

where now the densities are all referred to the laboratory frame. Next we
note that, from 5 and the relation du = Tds + G dn, we have

dfl = Tds + Gdn + vdic
Taking the differential form of 15 and using 16, we find:

dP = sdT + ndG + ,cdv = sd + nd + ,cd
Using 17 to evaluate 8P/&, we arrive at the following Lagrangian equations
of motion:

0 = d(Js)/dt =?; 0 = d(Jn)/dt = ñ'; 0 = d(J,c)/dt =
These, of course, agree with the canonical equations 11. (If we had identified
some or all of the thermodynamic variables with generalized coordinates q,
rather than with generalized momenta p, this agreement would not have
occurred.)

In the same way that, in arriving at 5 and 6, we noted that the mass density
rn' n'M could be defined in terms of the ic'-dependence of u', we now note
that the mass density m nM (referred now to the laboratory frame) can
be defined in terms of the i-dependence of P:

mc2 (öfl/,c) v • = (P/) -
Thus, the definition of the molar mass M may be taken to be:

M n 1(P/ô) . = (P/)' (P/ô) . (20)

VARIATIONAL PRINCIPLE FOR FLUID

The Lagrangian equations can be obtained from the following variational
principle: 0 = oIL dt = 5SJP dT. This refers to the fluid contained in unit
volume of the convected frame. If the integrandwere JP dt dv', the principle
would refer to the sample of fluid contained in the volume dv'. Since the
fluid contained in each volume element dv' must individually and indepen-
dently satisfy the requirement 0 = oJJP dt dv', then it must follow that
0 = OS. JPdt d V' where now the integration extends over V' as well as
over r. Thus, referring to relations 1, we arrive at the following variational
principle for the fluid:

0 = OJ 'PJc dx dv' = O$VP d
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where d c dt dx dy dz is the four-volume element in the laboratory frame,
and 'K is the four-volume occupied by the fluid between the specified initial
and final times.

Because the proper-time 'r is no longer the independent variable, the
operation d/dt must be defined in terms of the fluid velocity v as d/dt v
where is the four-gradient operator. Because v must remain normalized
(v v = c2) during the variation process, it must be parametrized in some
way so that the normalization will be guaranteed. This can be done most
conveniently by introducing a vector p whose direction is v

v cp/p where p (p (22)
It will turn out that the norm p does not appear in any of the Euler—Lagrange
equations resulting from 21. The components of p are to be regarded as
generalized coordinates, rather than as velocities. Using the definition 22
for v we have:

G__v=p'p (23)
Similar expressions define 4r and

The more detailed statement of the variational principle given in 21 is
0 = J5q)[(aP/aq) — p] d1" + $q(öq)p d92 (24)

where p 0P/q) and d92 is an element of the hypersurface that bounds
the four-volume V over which the integration is carried out. The variational
principle is thus equivalent to the requirement that the Euler—Lagrange
equations . p = *3P/3q be satisfied, and that the variables have definitely
assigned values on the boundary so that oq = 0 on 9'.

Referring to 17 and 23, the calculation of the generalized momenta can be
illustrated by the case for :

p P/() = (P/G) [G/()] = nv (25)
Similarly we find Pk = Snv,Pk nKkv, and PA = 0.Thus the Euler-Lagrange
equations corresponding to variation of ,9 and respectively are:

0 = (vn) = (vnS) = (vnK) (26)

Variation of p yields the following equation:
0 = = (ôP/4) [3(v q)/i3p]

= (c/p)(ôP/4) [q — v(4/c2)]

= (cn/p)[ + S .9 + () K — (M + H/c2)v] (27)
or

(M + H/c2)v = + S 5 + () . K (28)

Equations 26 are just the required conservation laws. Using the first, the
second and third could also be written as = K = 0. Equation 28 is effec-
tively the formal solution of the fluid equation of motion (Euler's equation),
and thus amounts to a statement of conservation of energy-momentum.
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That this is true can be verified by evaluating the stress-energy tensor w'
which, since our Lagrangian density is P, is given by:

w pq — Pö [P/a(q)] — Pö (29)
q q

which, if the Euler—Lagrange equations p = are satisfied, auto-
matically satisfies the equation:

= — (P/iX")q j = 0 (30)

where we have postulated that the pressure function possesses no explicit
dependence on the space-time coordinates. Using the expressions for the ps
that were given following 25, and making use of 28, we find that 29 becomes:

w = nv[3k + S3, + (k) K] — P5
= n(M + H/c2)vvk — Pó (31)

Making use of the first equation of 26, equation 30 becomes

d[(M + H/c2)v]/dx = n'P (32)

This is just Euler's equation for the fluid, and may be regarded as the deter-
mining equation for the molar energy-momentum vector (M + H/c2)v.
But 28 gives an explicit expression for this vector in terms of the four-
gradients of the canonical coordinates, so, as previously remarked, 28
constitutes the formal solution of Euler's equation.

It should be noted, incidentally, that when K becomes constant over
any region, the term () K in 28 becomes the gradient of a scalar, and this
corresponds to vorticity-free flow9 in this region. As previously noted, this
physically observable effect is characterized by a degeneracy resulting from
the fact that the labelling vector K is indistinguishable for neighbouring
samples of fluid. If the vector K, and hence , had never been introduced
into the formalism, and we had instead introduced the rest-mass energy Mc2
simply by replacing by where d/dt G + Mc2, we would have arrived
at a variational principle implicitly restricted to the case of vorticity-free flow.
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