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ABSTRACT

Three results will be reported:
(1) Reasons are advanced why discrete probabilities are not Lorentz-invariant.

Such probabilities can be obtained as time average probabilities TI,
for state i in frame I. They can also be obtained from an ensemble E1 of
systems which, like the system of interest, are each on average at rest in a
certain frame I. Such probabilities Q1 transform like the H. and ergodicity
is then a Lorentz-invariant notion.

(2) If the ensemble is of the usual type (ensemble E0) whose systems are all
at rest in I, then the ensemble-based probabilities are Lorentz-invariant.
If E0 is used ergodicity is not a Lorentz-invariant notion.

(3) If entropy is regarded as invariant and entropy maximization is used, the
canonical equilibrium probabilities hi which one finds contain an extra
term which is not usually found. This term will require further discussion.

1. THE GRAND CANONICAL CONSTRAINTS

Consider within the framework of special relativity, a procedure which is
familiar in statistical mechanics, namely the maximization of entropy subject
to cons.traints. When using the grand canonical ensemble these constraints
take the form:

— 1 (1)

>HIOEIO <EØ> (2)

= (N0>0 (3)

The system states i can thange as a result of inter-particle collisions (con-
ceived as point interactions), and collisions with the walls of the container.
A state i is assumed to have probability TIm; E10 and N10 are the energy and
particle number appropriate to state i, and (E0>0 and (N0)0 their respective
mean quantities. The suffix 0 denotes that all quantities are measured in an
inertial frame I in which the system appears at rest, and ( >0means that
1j0 has been used in the average.
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In keeping with the principle of covariance one must now seek to express
these constraints in a general inertial frame I, and must also include the three
components of momentum, P1, in the same way as the energy. Thus:

fI1=1 (4)

>HIE = <E> (5)

111P = <P> (6)

fI1N <N> (7)

These new constraints, 4 to 7, must of course be satisfied in all inertial frames.
Since, however, we cannot use an infinite number of them when actually
maximizing the entropy, we must therefore find a finite set of constraints
which ensure that equations 4 to 7 do in fact hold in all such frames.

To achieve this, it is necessary to know the Lorentz-transformation
properties of the quantities involved. First, in keeping with the usual practice,
probability H1, and particle number, N1 and N, may be regarded as Lorentz-
invariant. It is at once apparent that the equations 4 and 7 will be satisfied
in all frames I if and only if they are satisfied in any one frame (such as Ia).
The remaining quantities, energy and momentum, are not Lorentz-invariant
and must be treated differently. If, as we did in a recent paper1, one assumes
the system to be inclusive (i.e. including the energy and momentum due to
the stresses in the container) then <P> and <E> are the components of a
four-vector. Also, in any state i, P and E, form a four-vector, and thus
constraints 5 and 6 may be expressed by

H1cP1, E1} {c <P>, <E>} (8)

The linearity of the Lorentz transformation ensures that if an equation of
this form holds in any one inertial frame then it holds in all such frames.
Thus equation 8 may conveniently be expressed in the variables of I as

H0{cP10, E10} = {O, (E0)0} (9)

remembering that while the mean momentum of the system is zero in I,
the momentum appropriate to any given state i need not be so.

Suppose, however, that it is desired to avoid taking into account the stresses
in the container. One must then use the results applicable to a confined
system'. In this case the mean energy is not the fourth component of a four-
vector. Instead it is the enthalpy, <E> + pV, which, together with the
momentum, provides the four components. (Here p is the Lorentz-invariant
pressure, and V is the volume, which is subject to the usual Lorentz con-
traction.) However, in any given state i the system has constant energy,
momentum and particle number, and all its particles move freely without
collisions which change these quantities. It is thus appropriate to use the
transformation for a free system in this case, and to treat energy and momen-
tum as a four-vector.

An immediate difficulty arises. On the LHS of equations 5 and 6 we have
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four-vectorial quantities which may be transformed to another frame of
reference under the Lorentz transformation. On the right are two quantities
which are not components of the same four-vector, and can only, be trans-
formed to another frame by the introduction of extra terms involving p and
V. How can this difficulty be resolved? We arrive here at the notion of a
probability H for a discrete state i which is not Lorentz-invariant. This is a
new suggestion since discrete probabilities are normally considered Lorentz-
invariant2.

2. IMPLICATIONS FOR STATISTICAL MECHANICS

The simple conclusion of section 1 has rather far-reaching consequences.
The first of these is that it is in contradiction with any simple-minded relati-
vistic interpretation of ensembles. If a system is on average at rest, statistical
mechanics associates with it a representative ensemble of identical systems.
At any one time the various available states i of the system are present in this
ensemble in proportion to their probabilities Q10 (say). The motion of these
systems has never been discussed, as far as we know, it being assumed that
they are at rest in the inertial frame 1 in which the system of interest is at rest.
If one assumes this, then one arrives at an invariant probability

= Q0 (ensemble-based) (10)

For in a general frame I the number of systems in a given state i is the same
when the ensemble is viewed from frame I as it is when the ensemble is
viewed from frame I. This conclusion, based on ensemble-based probabilities,
is in contradiction with the result of the preceding section.

A resolution of this paradox is, however, possible. One can consider the
system of interest over a long period of time and allot probabilities H
to various states i according to the total time for which the system is in this
state. These time-based probabilities H are found to transform as one passes
from I to I, because of the Lorentz-transformation of the time. We shall
put simply

H1 = (1 + f)H10 (time-based) (11)

where f, is a function, to be discussed in section 3. It is by the use of time-based
(rather than invariant ensemble-based) probabilities that one may hope to
achieve agreement with section 1.

It will be appreciated that the difference between 10 and 11 implies a result
about ergodicity. If one confines oneself to just one ensemble as discussed
above, and considers a system which is ergodic in its rest frame 10, then

'1i0 = Q0, i.e. H = (1 + f1) Q,

It follows that with f 0 the system is no longer ergodic in I. Thus one can
hope to gain agreement with section 1 only by admitting either that ergodicity
is not a Lor1entz-invariant notion, or that the idea of an ensemble as a set of
systems all strictly at rest in a certain frame of reference (an ensemble E0)
is inapplicable. We favour the latter alternative and regard it as more satis-
factory to restrict the motion of the system S0 of interest, and also the motion
of the systems of the ensemble which represents it by the same condition
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(an ensemble E1): the systems must be on average at rest in the same frame
(Ia). Ergodicity can then become again a Lorentz-invariant notion, namely
for ensembles E1.

The second corollary of these considerations is that the invariance of
the entropy cannot be inferred from the Lorentz-invariance of the prob-
abilities Q, as has often been done in the past1' 2 The reason is that it is the
probabilities H (not Q) which can agree with the considerations of section 1,
and they transform as one passes from I to I. The thermodynamic argument
for entropy invariance is, of course, not affected by these considerations.
One assumes simply that the gradual acceleration of a system from one
frame to another is a reversible process which keeps the entropy unchanged.

One may ask for the constraints 4 to 7 to be amended to specify an average
enthalpy. However, this does not get over the difficulty that whatever the
expressions in these equations, the four-vector for the left-hand sides is
(cP, E), while it is (c<P>, <E> + pV) for the right-hand sides.

3. ThE TRANSFORMATION OF TIME-BASED PROBABILITIES
The velocity of frame 10 in frame I is denoted by w. The transformation of

equations 5 and 6 to the frame Jo in which the system is on average at rest
will now be carried out. Using 11, one finds

= y HjO(l + f1) (E10 + w P,0) (12)

<P> = 11i0(1 + f1) [y(P1011 + (w/c2) E10) + P101] (13)

where P101 and P.01 are respectively the components of P10 parallel and
perpendicular to w. It will be assumed, as a restriction on the system, that in I

<P0>0 Z P101110 = 0 (14)

Writing also
KEO>O E10H10

one knows that for a confined system1
= y[<E0>0 + (w2/c2)pV0] (15)
= (w/c2) y[<E0>0 + pV0] (16)

The fact that equations 12 and 15 must be identical, and that 13 and 16 must
also be identical, yields conditions on the unknown functions f1. These are
from the energy

f(E0 + w P10)11w = (w2/c2)pV0 (17)

and from the momentum

f1(E,0w + c2P1011 + (c2/y) P,0j H10 = pV0w (18)

From 18 one finds

(w2/c2) E f1E10H10 + E f1w P10H0 = (w2/c2) pV0 (19)
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and

fP1110 = 0 (20)

Since 17, 19 and 20 hold for all w, it follows that

fE[I0 = 0 (21)

and

fP01110 = (w/c2) pV0 (22)

The equations 21 and 22 are the conditions on the functions f. It can be
shown3 that in a one-particle system the time-based probabilities can be
transformed so as to make f1 in 11 equal to

= w P/E (23)

This theory also yields a pV term such that 23 satisfies 22. Lastly 23 reduces
condition 21 to 14 so that the solution 23 does in fact satisfy the general
conditions 21 and 22.

4. DISCUSSION

The major difference between the work done here and earlier work is the
rejection of the Lorentz-invariance of discrete probabilities. This apparently
far-reaching alteration to basic concepts is made easier to understand by
noting that the probabilities specified here represent the proportion of time
which is spent in a particular state. The transformation factors for the
probabilities H1 arise because the Lorentz transformation of time depends
on the velocity in each state i of the system (or particle) under consideration.
We considered two possibilities based on the specific f1 expression given by
equation 23. (A) If the system velocities depend on the state i, then f1 is
different for the various states i. (B) If, however, the velocity is constant (i.e.
the velocity is zero in frame Ia), then 23 yields f, = 0, and the probabilities
H are Lorentz-invariant.

The difficulty of choosing between these possibilities lies in deciding on
what to take as the velocity in 1 of a system of particles in a given state.
One point of view is to say that the mean velocity of all the particles in the
system should be considered. Allowing for fluctuations of momentum and
energy, this quantity varies between states i, and leads to the non-invariant
probabilities described before, and hence to case (A). This approach cor-
responds to the treatment of a system as confined1, in which the container
is disregarded. It leads at once to a statistical description of the pressure in
terms of the motion of the particles (e.g. equation 22). The complication of
this method is that the time spent by a system in a state i (defined by a set
of occupation numbers for particle states) is determined not by the overall
system velocity but by the individual velocities of all the particles.

One arrives at case (B) for an inclusive system, defined in ref. 1, if the
velocity of the system is taken to be that of the container, fixed at rest in
frame 10. The behaviour of the particles inside the container is discounted,
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and the momentum P10 of the system is deduced from its zero velocity in
Jo to be itself zero. Then, by 23, f is zero for all states i, and the standard
results with Lorentz-invariant probabilities follow at once. The pressure
cannot then be calculated by this method, and must be introduced in a
normalization factor.

The difference between cases (A) and (B) can most clearly be seen for a
one-particle system. Here the probabilities of the system (i.e. the one particle)
being in various states can undoubtedly be determined by the time intervals
it spends in those states, and these are accordingly altered under a Lorentz
transformation. This is case (A). It leads to the standard results for the
Lorentz transformation of energy, momentum, pressure etc. of a confined
system.

If entropy is regarded as invariant and if an entropy maximization
technique is used, a discrepancy occurs: the canonical probability '1110 is
found to be

'i0 = C exp (— [E10 + u10 P10]/kT0) (24)

instead of

1710 = Cexp(—E10/kT0) (25)

as given by conventional theory, and also by approach (B), treating the
system as inclusive. Here C is a normalization factor, k is Boltzmann's
constant, 2 is the temperature (measured in Ia), and u10 is the particle
velocity equal to c2P10/E0. There is clearly a discrepancy between equations
24 and 25. This question will be discussed elsewhere.
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