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ABSTRACT

A generalization of ordinary Carnot cycles is given for thermodynamic systems
with stationary gravitational fields. The two heat reservoirs are assumed to
be located at different points in space. In addition to the standard change of
thermodynamic quantities the Carnot engine is allowed to change its position
during the cycle. A generalized Carnot cycle' is then defined by the following
process: (1) Connection of the Carnot engine with the first heat reservoir (ex-
changing heat), (2) Change of position of the Carnot engine from the first to
the second heat reservoir, (3) Connection of the Carnot engine with the second
heat reservoir (exchanging heat), (4) Change of position of the Carnot engine
from the second to the first heat reservoir, after which the cycle repeats. In all
changes of position the presence of the gravitational field has to be considered.
The special case of an ordinary Carnot cycle is obtained when there is no gravi-
tational field or when the heat reservoirs are located at the same point. Under
the assumption that gravitation can be described by general relativity the
efficiency of these generalized Carnot cycles is calculated for stationary fields.
Thermodynamic equilibrium exists when the efficiency of a generalized Carnot
cycle operating between any two parts of the system is zero. For this case we
find that T j is a constant independent of position. As used here T is the
ordinary thermodynamic temperature and j denotes the norm field of the
Killing vector field , representing the stationarity of the gravitational field.
The proof is independent of the field equations of general relativity. Con-
sequently equilibrium consists of a temperature field which depends on the
gravitational field. For static fields with spherical symmetry Tolman has proved
this relation by using the field equation of general relativity. Our results show

that this relation holds quite generally for arbitrary stationary fields.

1. INTRODUCTION
Classical thermodynamics has been developed with the assumption that

either no gravitational fields are present in the system, or that the fields
act on the rest-mass of the system or particles only and not on any other
kind of internal energy like heat or elastic energy. Yet from special relativity
we know that every kind of internal energy has inertia, and from the principle
of equivalence of inertial and gravitational mass, it then follows that every
kind of internal energy has (passive) gravitational mass.

In order to find the exact thermodynamic relations for systems with gravita-
tional fields one therefore has to take into account explicitly the action of
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gravitation on internal energy. We assume that gravitation can be described
by Einstein's theory of general relativity. The first to work on this problem
were Tolman and Ehrenfest1' 2 By a proposed generalization of the second
law of classical thermodynamics to general relativistic systems Tolman3
derived for two special cases and thermodynamic equilibrium using the
field equation of general relativity the so-called Tolman relation T .Jg0o =
const. where g00 denotes the time component of the metric tensor of space
time. Later Landau and Lifshitz4 and Balazs5 derived the same result by
generalizing the thermodynamic relation (cS/ôE) = 1/1 to general relativistic
systems, where S and E denote entropy and energy. In the framework of
general relativistic statistical mechanics Ehlers6 and Tauber and Weinberg7
derived the Tolman relation for an ideal gas in thermodynamic equilibrium.

The approach to general relativistic thermodynamics given here differs
from those used by the above authors. It has no need of a previously defined
concept of entropy for general relativistic systems but is rather an opera-
tional approach in the sense of Buchdahl8. The basic idea, given9 earlier,
is a straightforward generalization of the concept of Carnot cycles. With
the help of these generalized Carnot cycles temperature, thermodynamic
equilibrium and entropy of general relativistic systems can be defined.

For a weak gravitational field Balazs and Dawson1° have introduced
independently of us this concept of generalized Camot cycles. Their results
are the weak field approximation of the results given here.

2. DEFINITION OF GENERALIZED CARNOT CYCLES

We begin with some plausible suppositions. The considered thermo-
dynamic system with gravitation can always be thought to be divided into
arbitrary subsystems, each sufficiently small so that temperature and field
quantities can be considered as constant throughout each subsystem but
may be different in different subsystems. Let the Carnot engine be a machine
which can convert heat into mechanical work to a certain extent, and vice
versa, and in which the mechanical work can be stored. The engine is supposed
to be smaller than each subsystem and its mass to be so small that it does
not change the gravitational field when it operates between two subsystems.
The subsystems can act like heat reservoirs. A generalized Carnot cycle is
then defmed by the following process:

(1) Connection of the Carnot engine with the first heat reservoir, exchange
of heat and conversion of heat into mechanical work stored in the engine.

(2) Change of position of the Carnot engine from the first to the second heat
reservoir and adiabatic change of its internal state.

(3) Connection of the Carnot engine with the second heat reservoir, con-
version of some of the stored mechanical work into heat and exchange
of heat.

(4) Change of position of the Camot engine from the second to the first
heat reservoir and adiabatic change of the internal state back to the
state at the beginning of the cycle.

This generalized cycle differs from the ordinary one only by the explicit
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change of the position of the engine in the gravitational field. By this change
heat is transported through the field and according to the equivalence of
inertial and gravitational mass this needs mechanical work. The efficiency
of the cycle is therefore modified by the field.

A generalized Carnot cycle is reduced to an ordinary one when there is
no gravitational field or when the heat reservoirs are located at the same
point.

3. EFFICIENCY OF GENERALIZED CARNOT CYCLES
We give a short and abbreviated calculation of the efficiency of a generalized

cycle for stationary gravitational fields using the notation of modern dif-
ferential geometry'1' 12 For a detailed calculation see Ebert and Göbel'3.

Let X, Y be vectors of the tangent space at an arbitrary point of the Rie-
mannian manifold space-time and let <X, Y) denote the inner product
and DX the covariant derivative of X in the direction Y. From the assumed
stationarity of the field there follows the existence of a timelike Killing vector
field which satisfies the Killing equation'4

<X, D> + <Y, D) = 0 for arbitrary X, Y (1)

A line in space-time of which all tangent vectors belong to the Killing field
is called a Killing orbit. Then by a short calculation one gets from equation 1

<, c> const. on any Killing orbit (2)

and, if t denotes the unit tangent vector of a geodesic line in space-time,

= const. on any geodesic line (3)

We now consider the Carnot engine during the generalized cycle. It will
move along a world line which first coincides for a certain time interval
with the world line of the first heat reservoir, then runs to the world line
of the second heat reservoir, coincides with this line for a certain time interval
and runs back to the world line of the first heat reservoir. The energy E
of the Carnot engine at a point p on the world line of the engine measured
by an observer for whom the gravitational field is stationary, is given by the
inner product of the four-momentum of the engine at p and the unit tangent
vector of the observer at the same point. Let the total mass of the engine
at p be denoted by m and the four-velocity of the engine at p by u, then
(sign convention: <X, X> > 0 for time-like vectors X; c = 1)

E = m<u, (4)

where : = is called the norm of the Killing vector at p.
The mass of the engine is a scalar but it changes its value when the internal
energy of the engine is changed, by heat exchange.

Without loss of generality we can accomplish the change of position of
the Carnot engine (from the first to the second and from the second to the
first heat reservoir) by moving it on geodesic lines (we only have to start
the motion with sufficient kinetic energy). Then equation 3 applies for those
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parts of the world line of the engine which belong to the change of position
and equation 2 applies for those parts which represent the connection of
the engine with the heat reservoirs (it is assumed that the gravitational field
in the whole thermodynamic system is stationary, therefore observers
located at subsystems observe also a stationary field).

Let Q, Q be the absolute values of the heat exchanged with the heat
reservoir a (first reservoir) and 1E (second reservoir) respectively and measured
by an observer co-moving with the Carnot engine. Then the mass of the
engine changes from the value m in the beginning of the cycle into m + Q
(c = 1) after the first heat exchange, and into m + Q — Q after the second
exchange. Taking into account all changes of kinetic and internal energy of
the engine and using equations 2, 3 and 4 one finally gets for the mechanical
work W gained in one cycle measured by an observer attached to the first
heat reservoir a (for detailed calculations see ref. 13)

W = — Q4fr
where D denote the constant norms of the Killing vectors along
the world lines of the reservoirs a and IE!I respectively according to equation 2.

When there is no gravitational field then = = 1 and equation 5
is reduced to the result of classical thermodynamics. If there is a field but
the two heat reservoirs are located at the same point then a = 3 and equation
5 is again reduced to the classical result.

If we choose a coordinate system such that the time coordinate is a
parameter on the Killing orbits (which is always possible), then <,> g.
Equation 5 then becomes

W = — Q/[gooU3)]/J[g00(a)}

where g00(a), g00(3) are the time-independent time components of the metric
tensor at the heat reservoirs a and 3 respectively. For the Carnot efficiency
içi we get from equation 5

= W/Q = 1 —

or in special coordinates from equation 6

= 1 — Q[g00(3)]/Q/[g00(a)]

4. DEFINITION OF TEMPERATURE

Before expressing the Carnot efficiency with temperatures instead of
heat energies we have to define temperature in a thermodynamic system with
gravitational fields. In classical thermodynamics temperature can be defined
by using Carnot cycles and the principle of Kelvin'5 which may be stated:
It is impossible to convert an amount of heat completely into work by a cyclic
process, without at the same time producing other changes. By adding Carnot
cycles running in opposite directions and using the above principle one gets
the well-known result that the ratio of the absolute values Q, Q2 of the
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exchanged heat energies in one cycle must be a real valued function of the
temperatures T,, T2 of the heat reservoirs only. Taking into account a
functional equation for this function, which results from the possibility of
adding two cycles together to form a third one, one defines the absolute or
thermodynamic temperature by

T2:=T,Q2/Q1 (9)

where T1 has to be fixed by a physical process.
For systems with gravitational fields we define temperature in a completely

analogous way. First we make the basic assumption: Kelvin's principle also
holds for systems with stationary gravitational fields. From here we get
for a generalized Carnot cycle the result that the absolute values of the
exchanged heat energies Q, Q in one cycle must be a real valued function f
of only the temperatures 7, 7 of the heat reservoirs and of the metric tensor
g, at ci and :

Q,/Q = f[7, g(ci); 7, gQ3)] (10)

Because of the possibility of adding two cycles together to get a third one a
certain functional equation for f has to be fulfilled' . Taking into account
this equation we define the thermodynamic temperature of a system with
gravitation by

T: = TQ/Q (11)

where 1 has to be fixed by some physical process.
Because Q, Q are the exchanged heat energies measured by a co-moving

observer attached to the engine (or equivalently attached to the heat reser-
voirs ci and IEI respectively) this temperature can be measured also by an
ideal gas thermometer permanently connected with the heat reservoirs ci
and respectively. This follows from the fact that a co-moving observer
attached to the engine and measuring in proper units finds no difference from
classical thermodynamics concerning the temperature as long as he uses
the temperature definition 11. The above defined temperature is equal to
the proper temperature introduced by Tolman3 in a completely different way.

Using 11 we get for the Carnot efficiency 7 the relation

— 1 Tb —
—

—

or in coordinates

= {7/[g00(ci)] — 7j[g00(I3)]}/7/[g00(ci)] (13)

Because the temperature and the norm of the Killing vector are both ? 0
by definition and g00 0 (see sign convention in connection with equation 4)
the relation j ( 1 holds. As in classical thermodynamics i7 can never become
greater than unity, even for the strongest gravitational fields.
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5. ThERMODYNAMIC EQUILIBRIUM
In classical thermodynamics two systems are in equilibrium if and only

if the Carnot efficiency of a cycle operating between these two systems is
zero. As can be seen this holds for systems with gravitational fields also if
we use the generalized Carnot efficiency given by equation 12. Therefore
equilibrium is characterized by

= Tcj (14)

The whole system is in equilibrium if equation 14 holds for all cycles operating
between any two subsystems, and therefore

Të = const. (15)

is the temperature relation in equilibrium. In coordinates equation 15
becomes

T,Jg00 = const. (16)
which is the Tolman relation. We see that this relation holds quite generally
for arbitrary systems with stationary gravitational fields. In getting equation
15 we did not use the field equations of general relativity, we only used a
Riemannian manifold for space-time, the principle of equivalence and special
relativity.
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