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ABSTRACT
For a single-component perfect Fermi gas we used the numerical programme
for the equation of state given by Bauer. For a star of hot non-degenerate
neutron gas we calculated the deviations of the internal structure with regard
to a totally degenerate neutron star. For a multi-component perfect gas with
an exponential-type elementary particle spectrum we present the equation of
state. The highest possible temperature is T0 = 2 x 101 2°K, where the total
mass density diverges. For the central region of hyperon stars, in contrast to
other authors, we can prove that the time component of the metric tensor has
no singularity, and that the velocity of sound tends to zero (instead of rising

above the velocity of light).

INTRODUCTION
We are studying the internal structure of hot neutron stars, which are in

fact hyperon stars. Our main interest is directed towards the peculiar
singularities in the centres of these stars. For this purpose we need an equation
of state which can be used up to very high total energy densities (p>> 1014
g/cm3). The matter in such a state consists no longer of neutrons only, but
also contains innumerable heavier particles and resonances. For in every
elementary scattering process new particles can be produced if there is
sufficient energy, and if the well-known conservation laws are not violated.
Therefore detailed calculations of hot hyperon stars have to deal with the
whole spectrum of elementary particles up to very high masses and their
interactions. Hansen' has made a calculation, which is based on all particles
with masses up to 1317 MeV (e, t, it, n, p, A, A, , ), taking into account
the conservation laws of the number of baryons, of electronic leptons,
muonic leptons and of the total charge. By using a variational approach he
proves that, as higher densities are approached (p > 10175 g/cm3) the anti-
particles as well as the leptons die out.

Our aim was to continue Hansen's calculation up to even higher densities,
which may occur in the central region of a heavy neutron star. We claim that
it is not possible to restrict the calculations to a definite number of different
elementary particles, but that the possible production of any particle of the
whole particle spectrum has to be included. For example, free heavy reson-
ances normally disintegrate quickly, yet this behaviour is no longer observed
in a dense region, if the degenerate Fermi distribution of the resulting
particle is already fully occupied. In the intermediate region the disintegration
is greatly impeded, depending on the chemical potentials and temperature, T.
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Tsuruta and Cameron2 calculated the static structure of a hyperon star
with Hansen's equation of state for the degenerate case, especially for
T < 1090K. Some of the results refer to densities up to 1021 g/cm3, where
Hansen's delmite mass spectrum is no longer applicable since the extrapola-
tion of the known baryon spectrum should be assumed to be exponential3'4.
Therefore we have studied for an exponential baryon spectrum of this type
the internal structure of a hyperon star up to infmite density and up to
T0 = 2 x 1012 °K, which then emerges as the lightest possible temperature.

For a conventional heavy neutron star of infinite central density the
possible singularities of the metric tensor as well as of the velocity of sound
have often been discussed. These peculiar features do not occur in hyperon
stars.

EQUATION OF STATE OF A SINGLE GAS COMPONENT
For simplicity we assume that every component of the hyperon star can

be treated as a perfect gas (i.e. we neglect the interactions). First we have to
compose the equation of state of a single gas component The particle
number density n, the pressure P, and the kinetic energy density of a perfect
gas are well-known:

8irI2 -1 3 (Tn = —- I p dp [exp(—y + E/kT) + 1] = m 11 (' —hj0 \!fl
p2dp [exp(—y + E/kT) + 1](E — mc2) =

rn4f2(-T)

= p2 dp [exp(— y + E/kT) + 1] 1p = m4f3
(v)

where the total energy E of a single fermion is related to its momentum p
and its rest mass m by

E2 = p2c2 + (mc2)2 (2)

and the parameter y with the chemical potential p by

y : = (p + mc2)/kT (3)

For our astrophysical application it is necessary to have for the integrals
1 a very fast computer programme of high accuracy and covering the whole
area of the PIT plane. For some distinct regions series expansions have been
given by Sommerfeld5, Chandrasekhar6, Guess7, Tooper8 and Bauer9.
Figure 1 shows the area where no series expansions are available. Three
well-known limiting cases are of special interest. For extreme quantum
degeneracy the integrals 1 can be solved analytically with the result that the
equations of state P(n, T) and c(n, T) respectively are independent of tempera-
ture. For the limiting cases of extreme non-relativistic degeneracy the
following result is obtained:

P-p (4)
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Figure. 1. Areas
broken line the

of different ways of calculating the Fermi integrals for neutrons. Above the
radiation pressure overwhelms that of a neutron gas. N non-, R -relativistic,

D degenerate.

Figure 2. Lines of constant y of a perfect neutron gas. They describe also the radial structure of
the star, since the density declines monotonically and y is constant throughout the star.
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and for non-relativistic non-degeneracy (t/mc2 4 — 1, rnc2/kT 4 1):

2 / 2
s—P, P=nkT, P=—1kT, n=(2mkT)exp(\y—-

For matter in thermal equilibrium the parameter y and T,.jg00 (with g00 being
the time component of the metric tensor in general relativity) are constant,
as has been shown by Balazs'°, Ehlers1' and Ebert12. For a neutron gas we
have plotted in Figure 2 the T(n) curves as a function of y. Since in a neutron
star the density decreases with increasing distance from the centre, Figure 2
shows that the temperature reaches a quasi-constant value in the outer
parts, where n 0.

HOT NEUTRON STARS
Oppenheimer and Volkhoff'3 discovered in 1939 that stars of a totally

degenerated neutron gas are stable only if their total mass is less than a
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and for the extreme relativistic case:

= 3P, P nt, P p, n (Ty)3 (5)
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Figure 3. Derivations from the Oppenheimer—Volkoff curve (oscillating line) with increasing
central temperature T0 for a hot neutron star.
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finite limiting mass mG (see Figure 3). If m > mG, a degenerate star will
probably undergo a gravitational collapse, since in that case there is no
static solution. But there are static solutions for partially degenerated
neutron stars.

The structure of a radially symmetric static neutron star in thermal
equilibrium is determined by the general relativistic field equations of
Einstein. Using two formal parameters m* and r they can be transformed
into:

dm* 2 dT m* + 4rrr3P*4mr p, — = —T * (8)dr dr r(r—2m)
This system of differential equations can be solved uniquely if y and the
equations of state p = p*(y, T) and * = P*(y T) are determined, and
with the boundary values:

= 0) = 0, T(r 0) = T0 (9)

In these equations the asterisk denotes that the quantity is measured in the
natural units (c = G = 1).

m* is chosen so that at a sufficient distance from the star the curved space
becomes asymptotically flat and the motion of a sample is governed by
Newton's laws. Then m* and r can be identified by the mass and the radius
respectively. Since 2m* r for static stars, for those stars in thermal equi-
librium the temperature gradient is negative as shown in equations 8. This
resembles the radial decrease of the gravitation potential which causes the
temperature not to be constant in thermal equilibrium on account of the

Log p [g/cm]
Figure 4. The equation of state of a neutron gas P(p) for different fixed y, or the relation of P
and p in the radial direction of five stars with equal central temperature but different Po = p(y, T0).

Only the outer parts of the star depend on the degeneracy parameter y.
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Figure5. The density of the five selected stars as a function of r. The different behaviour in the
outer parts of the star is caused by different degeneracy parameters y. The total mass of the
star becomes very great when the neutron gas in the high density region p > 1012 g/cm3 is no

longer degenerate.
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Figure6. The parameter m*/r as a function of the radius r for the five selected stars. In the classical
theory the gravitational potential, and in Einstein's theory, the metric component g,,, is related

with m*/r.
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Figure 7. Contour lines of the finite radius R as a function of the central pressure P0 and tempera-
ture T0. It is evident that in a great area R does not depend on the temperature inside the star.

This was the reason for other authors to neglect the influence of the temperature

general relativistic red shift. As a consequence of the constancy of y throughout
the star, the star structure is determined by the respective y-line in Figure 2,
and by the differential equation 8 the parametrization of the radius is fixed.
Our results are given in Figures 3 to 7. In Figure 3 the lines of equal central
temperature are presented as a function of central density Po and relative
total mass rn/rn® (m® being the mass of the sun). The great deviations of the
Oppenheimer—Volkhoff behaviour are registered only at high central
temperatures, when a large part of stellar matter is no longer degenerated.
This is illustrated in Figure 4. For high central densities the equation of
state remains the same. With regard to the radial structure of the density
the deviations due to the increasing non-degeneracy in the outer parts of the
star are shown in Figure 5. Figure 6 makes the complexity of the peculiar
internal structure of neutron stars quite evident. Figure 7 shows the contour
lines of the radius r in the T0/P0 plot. Only for low central pressure and high
temperatures does the structure of the star greatly depend on T0. This dia-
gram is more suitable for discussing the influence of the non-degeneracy on the
radius of the star than the usual vortex diagram. We would like to point out
that the density decline is extremely steep in the immediate vicinity of the
centre for stars with high Po and near the surface for degenerate stars.
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MULTI-COMPONENT GAS
For the study of a hyperon star an equation of state for a multi-component

perfect gas is needed.
The thermal equilibrium conditions T = const. and y const. for a multi-

component gas system in a fixed volume can be derived by maximization
of the entropy S = Si of the whole system.

oS = - LON.
K7 K7

If the total energy E = E and the total particle number N = N are
conserved, and 0E1 and ON1 can be varied independently, the above-men-
tioned equilibrium conditions are obtained. The equation of state of the
multi-component system can be calculated directly from those of the single
gas components, if y and T are known.

In order to apply this model to the matter of hyperon stars we have to
assume that the interaction between the particles can be neglected, and that
the total number of particles is conserved in every elementary process. The
strong interaction between some neighbouring particles can be taken into
account by defining these as one new particle in terms of thermodynamics
(molecule'). Moreover, we need the abundance distribution a (m) of the
components within matter at high densities. It has been confirmed by
Hansen's' calculation that the anti-particles and the Bosons diminish in
relation to the increase of the Fermions, to which we have restricted our
calculation.

The abundance distribution of the Fermions a (m) is defined by the product

Figure 8. The abundance distribution a(m), the product of the number particles per mass interval
and the factor of multiplicity (1 + 2i) (1 + 2j), is plotted against the baryon mass. The points
are results of the statistics of those particles which are known, the dashed line is the interpolation
line of the discrete experimental abundance distribution. The straight line is the theoretical

continuous abundance distribution, suggested here.
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Figure 9. The particle number density per mass interval dn/dm [g i] is plotted against m.
While for all lines is fixed, the temperature varies from one line to another. Thus this series of
distribution functions describes the deviations of this function if an observer moves towards

the centre of the star.

of the number of baryon components per mass unit and their multiplicity
(1 + 2i) x (1 + 2j) with i and j being the spin and the isospin respectively.
We confine ourselves to baryons and their heavier resonances. Their abund-
ance distribution has been measured up to about 3 GeV. In Figure 8 interpola-
tion of the experimental data'6 resembles very much the exponential
behaviour in the area where it is likely that all baryons are detected. If it is
assumed that this exponential behaviour holds for all masses—this has not
been contradicted up to now by experiments, and several theoretical argu-
ments3'4 have been put forward in favour of it—it holds also if only strongly
interacting particles are counted as new ones thermodynamically.

For the quantitative fit of a (m) between 1 and 2 GeV we used not only
particles with well-known (i, J' m) but also those where some of these quanti-
ties were lacking and were to be interpolated in a simple fashion with the
result:

7mc2
a(m) exp +

52).
T0 20 x 1O'2°K
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This parameter T0 is approximately the same as the highest possible
temperature in nature' of Hagedorn3. After substituting the discrete abund-
ance distribution by a(m), the total number density

n('y, T) = 5: dmexp ( +
52) m3f1 (),')

togetherwith an analogue formula for the total pressure P and for the energy
density 8 yields approximately the equation of state of the multi-component
gas. In Figure 9 log (dn/dm) is plotted versus log (m) for y = 102 and different
T. The maximum of any curve exhibits the most frequent particle component
at that temperature. For T T0 the matter curdles, i.e. the total rest mass
energy grows faster than the kinetic energy. The components of the heaviest
particles for a given y and T are not degenerated. Therefore, with the asymp-
totic expression 7

dn 1 1 mc2f T0\=
(2irmkT)exp + — 1

— 52

for heavy masses, the total particle number density n(yT) diverges for T T0
(see Figure 11). In Figures 10 and lithe equation of state for fixed y of a

Figure 10. Differences between the perfect neutron gas (chain-dotted) and the hyperon gas
(full line). For increasing pressure, P/p tends to the value one third for the former, in the latter
case to zero. The equation of state at high pressures depends on the degeneracy parameter y.

multi-component gas is compared with that of a neutron gas. While P/p for
all 'ys in the case of the neutron gas approaches asymptotically the value
one third with increasing total pressure, P/p declines in the case of the
hyperon gas. The exponential factor z,defined by

ppZ (14)

in this case is c 1 and the equation of state depends in the high pressure
region on the degeneracy parameter (the heaviest gas components are not
degenerated). Although we did not calculate transition states between the
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multi-component gas (with the continuous abundance distribution accepted
here) and the neutron gas, the qualitative behaviour as plotted in Figures
10 and 11 (dotted lines) seems to be evident. Calculations of multi-component

Figure 11. Pressure P dependence of the temperature of a neutron gas (chain-dotted) and a
hyperon gas (full line). The derivations are important at low temperatures too.

gas systems have been made by Hagedorn3 too, but in order to keep the
calculations analytical, he restricts them to the case y = 0. The results may
therefore be applicable to the big bang3, but not to the structure of the stars.

CENTRAL SINGULARITY OF NEUTRON AND
HYPERON STARS

For neutron stars of infinite central density it is known for all equations
of state applied up to now that g00 diverges to zero for r = 0 with increasing
central pressure.

Using the energy—momentum tensor of a static ideal fluid T00 =
—P and the general line element of a static radially-symmetric star

ds2 = g00 dt2 — g, dr2 — r2(d02 + sin2 0 d2) (15)

(
goo1=o =

1
2M—

—fl--)

(
exp

—
I0
J ,

dP
P +

Log r

LJ

0)0-J

10

Log P [dyne/cm2]

Einstein field equations yield the equation

(16)

integrated in the radial direction. The factor (1 — 2M*/R) is chosen so that
g00 is continuous in the radial direction on the surface of the star (P1r =R 0).
So the integral diverges in its upper limit, if the exponential factor z of
equation 14 is greater than one. Then g001=0 = 0 for P0 x. This zero
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of the temporal component of the metric tensor in the centre of the star, a
peculiar effect ('singularity') of general relativity, may be called 'zerolarity'.
This zerolarity' will not occur if the exponential factor z is less one, since
then the integral converges and is finite.

Ehlers1' has proved (in a general relativistic kinetic gas theory) that
the equilibrium conditions y = const. and TJg00 = const. are valid for
multi-component systems too. But since in our open multi-component gas
the temperature cannot rise above T0 (even if the energy density should rise
to infinity) we are sure that in thermal equilibrium g00 must have a positive
minimum at the centre of the star and indeed the integral 14 converges for
the equation of state of our system.

Other authors'5 have obtained the strange result that for very high densities
the velocity of sound v5 = (dP/dp) seems to surpass the velocity of light.
This result has been arrived at by taking the repulsive part of the nuclear
forces into account. Then the pressure rises more quickly than the total mass
energy p. In our multi-component system such contradiëtion does not occur.
Moreover, the sound velocity decreases with increasing density.
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