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ABSTRACT

Linear phenomenological relations are recast to include relaxation effects.
The relations are then written in a form suitable for general motion of the
system and transformed to a coordinate system which is stationary relative
to the observer. Generally, secondary fluxes are then observed which would
be important in the fields of heat and mass transfer, for example. The Onsager
relations are interpreted as reciprocal relations between the distribution
functions of relaxation times. The principles on which these developments are
based are that the thermodynamic properties of elements of a material are
independent of the properties of neighbouring elements and also of the motion
of the element in space, but may depend upon the thermodynamic history of

the element.

1. INTRODUCTION
Many processes occur in which a specific physical quantity is transported

through a sequence of non-equilibrium states of the system. Such transport
processes are of a thermodynamically irreversible nature which is character-
ized by an irreducible increase in entropy.

The simpler aspects of these irreversible processes are usually treated on
the macroscopic scale by linear phenomenological laws of which there are
many, such as Newton's viscous law relating deformation stress with de-
formation strain rate in fluids, Fick's law relating flowrate of matter in a
mixture with the concentration gradient of that matter, and Fourier's
law relating heat energy flowrate with temperature gradient. Where one or
more of these phenomena occur simultaneously then coupling occurs and
important new phenomena are established such as the coupling between
heat conduction and diffusion which gives rise to thermal diffusion.

In the subject of irreversible thermodynamics physical quantities such as
temperature gradients and concentration gradients are termed forces'
and the associated effects such as heat energy and mass flowrate are termed
f1uxes'. The product of forces' and fluxes' gives the entropy production
rate or entropy source strength'. The identification of process source
strengths and therefore the evolution of a system is the central theme of the
subject of irreversible thermodynamics. In a published account de Groot1
has outlined and interpreted many of the main features of the subject and its
applications.
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In the following work the theory is formulated in a convected coordinate
framework which leads to important new results.

2. THE ONSAGER RELATIONS

In summarizing the previous comments on phenomenological laws it may
be stated that the forces are linearly related to the fluxes and allowing
for coupling, any force may, generally speaking, stimulate a response in any
of the possible fluxes. This statement may be compactly represented by

J2 = LX,1 (, fJ = 1, 2, 3,...)
where summation over the repeated suffix is implied.

In equation 1 the Lap are the phenomenological coefficients and those in
which = fi are the direct coefficients whilst for x /J coupled or inter-
ference effects occur.

The important Onsager relations state that the phenomenological co-
efficients are symmetrical,

=
The proof of these relations is treated by de Groot' on the basis of statistical

mechanics, microscopic reversibility and regression of fluctuations.
The hypothesis introduced by Onsager into the third part of the proof of

the relations 2 is that on the average the decay of a fluctuation of the thermo-
dynamic parameters of a system follows the ordinary linear macroscopic
laws. Suppose that the deviations of the thermodynamic parameters have the
values a(y = 1,2, 3,...) then equation 1 may be written

J = LpXp
where the bar over à denotes time averaged over microscopic fluctuations.

The hypothesis then implies that the time scale of the process T, is related
to the time scale of fluctuation 1 and the molecular time scale mby the
inequalities ' Pp Pj
where

= o()
and

= o()
Provided phase-shifting between the forces and fluxes does not impeach

any of the fundamentals of irreversible thermodynamics, and this appears
to be so, then there is the possibility of relaxing the inequality

If
and admitting linear complex phenomenological laws of the type

1+ — T+V+—
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The above development was implied in an isolated example by de Groot
in which the relaxation associated with an internal redistribution of energy
was treated.

In considering spatial distributions of the forces and fluxes it is necessary
to note that tensor forces can only give rise to tensor fluxes of the same rank.
This is an important consideration when treating coupled phenomena.

Up to the present, no mention has been made of possible motion of the
reference frame in which the forces and fluxes are measured. In the following
section the phenomenological equations are written in a reference frame which
moves in space and this produces modifications in the phenomenological
equations as seen by an observer with different motion.

3. GENERALIZATION OF THE EQUATIONS
(i) Small variable strain rates

In this work spatial distributions of physical quantities will be denoted
by Latin subscripts or superscripts whilst classes of physical quantities will
continue to be denoted by Greek subscripts as before.

The general tensor form of the linear phenomenological laws of the type 8
for small variable strain rates is

+ijk... 7+ y+ijk 9Srst fi first

because the fluctuation programme of the thermodynamic parameters could
often be described by a Fourier series in real cases.

Since the phenomenological laws9 are written in proper tensor form, which
ensures invariance of form under a transformation of coordinates, then
they are quite independent of the motion of any reference frame in space.
When applied to a continuum in motion, addition of corresponding quantities
throughout the whole history of motion is accomplished by writing the
phenomenological equations in a reference frame which is convected,
rotated and deformed with the continuum. Experimental observations are
invariably made in a reference frame which is fixed relative to an observer
who does not have the motion of all regions of the continuum. Transfor-
mation from the convected to the fixed reference frame will under certain
circumstances introduce new terms into the phenomenological laws. But
initial isotropy remains in the convected reference frame.

The formal apparatus for transforming rheological equations of state
containing time derivatives and integrals has already been treated in some
detail by Oldroyd2; for tensor quantities of general type and any rank of
particular interest in practical cases there are phenomenological laws relating
tensors of rank one. The linear differential form of 9 is then

NP Iif=Q

(NN)J=LSP (TM)x (10)

where to 1.

For sufficiently slow fluctuations of the forces and fluxes terms containing

421



J. HARRIS

higher time derivatives than the first in 10 can be neglected and the truncated
linear differential equation is

(1 +,i-)J=L2 (i +ri-)X (11)

The general linear integral equation has the form

= , — t')X(x, t') dt' (12)

where t is current time and t' is non-current time and x is the fixed coordinate
system. The memory function t/i(t — t') may take the form corresponding
to the same type of function obtained in rheological equations of state,
namely

— t') = R(x)exp — [t — t'] dt (13)

In 13 R(x) is the distribution function of relaxation times associated with
the flux and fiforce.

In generalizing 10, ii and 12 it is noted that the phenomenological
equations are not associated with a fixed point in space but rather with an
element of material over all time in the interval — t' t. Consequently
the time differentiations and integration must follow the motion of the
material and only under the special condition of small material velocities,
i.e. creeping flow, can the time derivatives and integrals be interpreted in a
simple way.

The differential equation 11 is a special case of the general integral form 12
obtained by substituting into 13 a distribution function of the type

R(z) = Lp('r1/A1)(r) + L(21 — )/)}6(t1— )L1) (14)

For the system characterized by 14 then it may easily be shown that
fluctuations of a frequency w give

J = L/(1 + co222) [(1 + W2t1i1) — iw(21 — T1)]Xfl (15)

(ii) General motions
Generalizations of the linear phenomenological equations 10, 11 and 12

are now considered in which the motion of the continuum in which the
processes operate is arbitrary.

In the convected coordinate system introduced by Oldroyd2 with coordi-
nate surfaces = constant embedded in the deforming continuum, a
material element which is located at c at time t occupies the same position
at all prior and subsequent times. In this reference frame equation 12 takes
on the form

IT = ifr(t — t') t')dt' (16)

where H, are the convected components of the fluxes and forces respec-
tively. The spatial distributions in 16 are written as contravariant tensors,
but they might equally well be written as covariant tensors.
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Transforming 16 to a coordinate system which is fixed relative to the
observer, by the techniques introduced by Oldroyd, then

=
J- i(t — t')X(x', t') dt' (17)

The covariant form of the equation is

- i(t t') Xrp(X', t') dt' (18)

Oldroyd has also considered generalizations of differential equations3 '.
Considering equation 11 then the corresponding form in the convected
coordinate system is

(19)

Transforming 19 back to a fixed coordinate system then the form equivalent
to 19 is

(1 + L (t + (20)

where

Kit i K— U K — 'K

with an identical form for

6X9
&

It may be noted from 21 that when the velocity field Uk and its spatial
gradients are not vanishingly small then the process of transforming time
derivatives introduces additional terms into equation 20 and its expanded
form becomes

+ , + UKJ,K —
UKJ2]

=
(x + Ti + UiX,r

t4rXJ)
(22)

Identical results are not obtained by taking the covariant equivalent of 20
namely

(1 + = (i + (23)
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for in this case

1ii K-- = -- + u Ji,K + U"JK (24)

and this should be compared with 21. There are important implications in
these results as will be shown later. Other forms of 21 and 24 may be written
which bring out more clearly their fundamental difference. To obtain a
true comparison the equations are written in cartesian form in which there is
no distinction between covariant and contravariant tensors. It is also
convenient to take the velocity gradient in cartesian form.

I /3UJ< a\ 1 "aUK ÔUj\
UK,t = — + + — (—_ — —) = WiK (25)2 0X aXK 2 ax aXK

Then 21 becomes

j2, aj2, aj
---=---—+uK---——(eK+wK1)4K (26)ut ut IJXK

whilst 24 becomes. (3J, aj-= —- + UK— + (e1K + (Dj) JaK (27)& 3t aXK

It may be seen from 25 that

eK= eK (28)
and

JiK= Ki (29)

and hence 27 differs from 26 by the addition of 2eLKJK
The simplest time derivative which takes account of both the translation

of the continuum and also its rotation is just the common part of 26 and 27
and this is denoted by 2IJ/2t where

2J. jcc aj.
(30)

2Yt at aXK

4. SIMPLE SHEARING
It is worthwhile from a practical viewpoint to examine some of the impli-

cations of the developments in Section 2 when the continuum is deformed in
steady simple shearing motion.

Consider laminar motion of the continuum in which the velocity field has
the pattern

Ui = (yx, 0, 0)

where y is constant. This corresponds to steady simple shearing motion in
which the shear planes move parallel to the x1 axis. Suppose that there is a
single thermodynamic force of unity tensor rank (vector), which has the
distribution

XK = (0, X2, 0) (32)

424



SECONDARY EFFECTS IN IRREVERSIBLE THERMODYNAMICS

where X2 is a constant. This could be for example a temperature or a con-
centration gradient in the x2 direction. For simplicity it is taken that only
direct fluxes are generated so that in the array of phetiomenological co-
efficients only L11 is non-zero.

Differences occur in the final results according to whether the contra-
variant differential equation 20 or covariant equation 23 is taken. Treating
the contravariant equation first then

1 Direction J1 — ).1yJ2 = —L11r1yX2 (33)

2 Direction J2 = L11X2 (34)

or = L11yXA1 — t1) (34)

J, = L1X (35)

where to avoid confusion the 1, 2 coordinates are now labelled x, y.
The flux J, in 35 is the ordinary direct flux produced by the force X but

the flux i in 34 is a secondary flux which is only zero if y(A1 — t1) becomes
vanishingly small which it would in a stationary continuum.

The covariant case of the same differential equation gives

= L11yX(r — A1) (36)

J = L1X (37)

Rheological equations of state have been formulated in which the partial
time derivatives have been translated into the form 30 which allows for
convection and rotation of the continuum but not straining. In this case it is
easy to show that the differential equation 11 gives:

= J1 yX (38)

J, = L1 (i+AitiY2)x (39)

In this case not only are there both direct and secondary fluxes, but a new
feature arises in that they are both non-linear in the shear rate, but the
relation between the force and corresponding flux remains linear.

Phenomenological relations between scalar forces and fluxes would not
exhibit secondary effects because in general motion the time derivatives then
are interpreted as the Eulerian time derivative DS,Dt where

DS S r
(40)

and S is any scalar quantity.
Tensors of rank two have been treated by Oldroyd in the form of stress/

strain rate relations.
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5. CONCLUSION
The linear phenomenological relations of irreversible thermodynamics

have been broadened to include relaxation effects in the coefficients. The
well known Onsager reciprocal relations

L5 =
which state that the array of phenomenological coefficients is symmetrical
can then be restated as

= R
The corresponding statement here is that the distribution of relaxation

times is symmetrical.
The general effect of translation, rotation and deformation of the system

is that new terms can occur in the thermodynamic equations of transport
processes and these describe secondary fluxes. In rheological equations the
secondary fluxes take the form of normal force effects in simple shearing;
these have often been reported in the literature.

Scalar thermodynamic forces produce no secondary fluxes and in tensors
of rank one the covariant form 23 produces negative secondary fluxes positive
secondary fluxes in simple laminar shearing are present in the contravariant
form and when time derivatives of the type 30 are used. It has already been
noted2 that in the rheological equations the corresponding covariant form
produces results which are not in accord with experimental results. The
contravariant form produces some of the correct types of effects but time
derivatives of type 30 are perhaps the most successful3'4 in simple equations
containing relaxation effects.

The secondary flux does not of course contribute to the evolution of
entropy since the scalar product of this flux with the force is zero.

It is clear from equation 20 that 'cross' phenomena can also produce
secondary fluxes. That is, f3 forces can produce secondary,x fluxes.

A fundamental principle implicit in this work is that the thermodynamic
properties of a material element do not depend upon the properties of
neighbouring elements but may depend upon the history of thermodynamic
states of the element. The thermodynamic properties of the element are also
independent of the motion of the element in space.
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