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ABSTRACT
Following a general discussion of the approach to equilibrium of a finite system
in contact with a heat bath, an illustrative calculation is presented in terms of
a weakly-coupled, harmonically-bound oscillator chain. A modified Gibbs
entropy is defined in terms of PN' the reduced Liouville function of the system,
which is obtained from the total Liouville function of the system and heat bath
by (in principle) integration over the heat-bath variables. Since the system
and heat bath are mutually interacting, some structure is observable in the
entropy function as the system evolves from its initial value toward equilibrium,
but the entropy ultimately evolves to its correct equilibrium value, despite
time-reversible dynamics, because PN spreads from an initially sharp distribu-
tion to a final one that is characteristic of the heat bath in equilibrium. The
entropy function is presented as au analytically defined, conceptually accurate

substitute for Boltzmann's H.

1. INTRODUCTION
Compelling arguments have been offered in support of the point of view

that no physical system of thermodynamic interest can properly be regarded
as isolated" 2 Although the impossibility of shielding a system completely
from cosmic rays and fluctuating gravitational fields is seldom questioned,
the fundamental importance of these interactions of the system with the
outside world is often either ignored or denied. Rather than provoke an
unwanted emotional response to any position we might take on the ability
of a general isolated system to approach equilibrium as a consequence of its
own dynamics, we merely point out that, as in equilibrium statistical
mechanics, the approach to equilibrium may be treated with complete
validity in terms of open systems, and usually with greater ease than for
closed ones. (Canonical theory is surely no less valid than microcanonical
theory, and is usually simpler.)

The general system to be studied herein is a collection of interacting
particles coupled to an infinite heat bath. The initial positions and momenta
of the particles in the system are assumed to be known as well as measuring
techniques permit, whereas the initial heat-bath variables are known only
statistically. No assertion is made that the heat-bath variables are random,
whatever that means; rather the initial choice that the heat-bath variables
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are canonically distributed is to be regarded only as a statement of our
knowledge of them, and not as an assertion that the variables are so distri-
buted.

Gibbs3 used the Liouville function p of an N-particle system to define the
entropy

s= —kjlndr (1)

where the integration is over the entire 6N-dimensional phase space, and at
equilibrium the Liouville function is given by

p = exp(—2 — flE) (2)

where ) is a normalization constant, fi = 1/kT, and E is the energy variable
of the N-particle system. Since p is a constant (its total time derivative,
according to the Liouville theorem, is zero), Gibbs was unable to provide an
analytical development of S, as the system evolves from some initial non-
equilibrium state, to its final equilibrium value. Although the Gibbs entropy,
with p given by equation 2, is the correct thermodynamic entropy, there is
apparently no provision in Gibbs—Liouville theory for S to get to its equi-
librium value, or even to change with time.

— — — — Heat ' System

IITTTTV2K
Figure 1. Infinite chain of oscillators, each harmonically bound to its home position by a leaf
spring of constant K, and coupled to nearest neighbours by springs of constant k. A fmite

segment is regarded as the thermodynamic system, and the surroundings as the heat bath.

In the present development, p is the Liouville function for the entire
system and heat bath; although it formally satisfies the Liouville equation,
it is not used explicitly in the subsequent calculations. Instead, a reduced
Liouville function PN is obtained by integration (in principle) of p over the
heat-bath variables. This PN, no longer a phase-space constant, contains
implicitly the interactions of the system with the heat bath, and an entropy
defined as in equation 1, except with PN, correctly expresses the evolution of
the system to equilibrium.

The assumption that the heat-bath variables are canonically distributed
can only be made as an initial state of knowledge, because the (presumably
better known) system variables interact with the heat bath and transiently
sharpen our knowledge of the heat-bath variables. (Analogously, a finite
cold system in contact with a warmer heat bath transiently cools the heat
bath in the neighbourhood of the contact area.) The sharpening of heat-bath
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variables permits non-thermal transfers of energy across the boundaries of
the system in such a way that the entropy evolution is not always a monotonic
function of the time. This point is examined in detail in Section 4.

Notable features of the present treatment include the clear separation of
dynamics from statistics, freedom from considerations of ergodicity, and
easy clarification of the sometimes muddied process by which a system with
time-reversible dynamics can evolve to equilibrium. These features are
discussed explicitly in terms of a system of weakly-coupled, harmonically-
bound oscillators, as shown in Figure 1. The dynamics is treated in Section 2,
followed by the introduction of statistical features in Section 3. Specific
results, particularly for small systems, are given in Section 4, and a short
discussion of these results appears in Section 5. More detailed treatments of
some aspects of this paper, and more extensive references to related work,
appear elsewhere7.

2. DYNAMICS
The Hamiltonian of the system shown in Figure 1 is given by

H [(p/2m) + (Kx/2) + (k/2)(x - x+)2] (3)

The general solution to the equations of motion is of the form

xjt) = r [x+ r(O) fr(t) + Pn +r(°)g(t)/mQJ (4a)

and p(t) rn(t), where (4b)

fr(t) = j d4 cos r4 cos [Qt(1 — 2y cos (5)

g(t) = Q j fr(t') dt' (6)

= (K + 2k)/m, w2 = k/rn and y = (w/Q)2. An exact treatment of this
particular chain is available elsewhere6, but for present purposes, when
y 4 1 and the oscillators are thus weakly coupled, equations 5 and 6 may be
quite accurately approximated as

fr(t) = Jr(YQt) cos (Qt — nr/2) (7)

and
g(t) = Jr(yQt) sin (Qt — ric/2) (8)

After a long time, still for y 1, equations 7 and 8 differ from the exact
expressions of equations 5 and 6 principally in the phase of the trigono-
metric term, but the essential ideas of the treatment are not affected by use
of the approximate expressions.

Equations 7 and 8 exhibit the basic dynamic features that can lead to
equilibrium: since f0(t) is proportional to J0(yQt), it is evident that the
influence of each particle's own initial conditions in determining its future
must vanish as t —÷ , so that its ultimate state is determined by the initial
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conditions of the other members of the chain. Even more strongly, since
Jjx) vanishes as x for x n, it is apparent that any finite segment of the
chain must evolve to a state that is determined entirely by the initial condi-
tions of increasingly remote parts of the surrounding heat bath.

The one other feature of note in the dynamics is the time reversibility of
equations 4, since the pr(O)S change sign on time reversal. (A film of the
motion of the chain would make sense when run in either direction.)
Apparently, then, the approach to equilibrium of this system does not lie in
the dynamics, though the loss-of-memory feature discussed in the last para-
graph is necessary in order that equilibration is not dynamically precluded.

3. STATISTICS

Equations 4 are not statistical; they give definite values of xjt) and pjt)
in terms of the presumably-known initial conditions. It is now appropriate
to recognize that these initial conditions are not precisely known, but rather
must be described as a distribution p(O), the initial Liouville function of
the entire system and heat bath.

It is convenient to specify the initial conditions of the system variables
in terms of centred Gaussian distributions by writing

x(O) = x(O) — u, (9a)

and
p(O) = p,(O) — v,, (9b)

where u,, and v,, are the initial expectation values of the coordinates and
momenta, respectively, of the system variables. The heat-bath initial con-
ditions are distributed essentially canonically, so that p(O) may be written

—
N

exp { — [x(O)/o]2/2} N exp { — [p(O)/iJ2/2}—

o(2ir) n=1

>
'exp {—fl[p(O)/2m + mQ2x(O)/2] }I I

(2ir/f3Q)

where cc and ö are the initial variances of system variables and /3 = l/kBTb,
with 7, as the temperature of the heat bath. The symbol II' denotes a product
over all variables outside the system. The heat-bath variables are distributed
as if they were uncoupled classical oscillators of mass m and frequency Q,
in canonical equilibrium. The coupling terms kxx +1 have been omitted,
both because they are small when k K and because they complicate the
calculation. (They are included in the exact treatment of this problem6.)

Any function of the variables x(t) and p(t) can now be averaged by using
equations 4 to express the function in terms of the initial values and integrating
with p(O) over the initial phase space. Application of this procedure yields

(x(t)> = [uJ—(t) + (vr/mQ) g(tfl

and (p,,(t)) = m<(t)>. Since equation 11 is a finite sum, it is evident from
412



ENTROPY OSCILLATION AND THE H THEOREM

equations 7 and 8 that <x(t)> —+ 0 and <p(t)> —+ 0 as t —÷ oo. Primed variables
may now be defined for all t as

4(t) = xjt) — <x(t)> (12)

and similarly for p(t).
The proper function to represent the phase-space distribution of the

system variables is p [Y(t)], where Y(t) is a column vector of the centred
system variables, the transpose of which is Y = (xx. . . xp . . . p), and
x = x(t). The function PN[Y], which is the reduced Liouville function
mentioned in the introduction, is usually not directly obtained from the
Liouville function of the entire chain. Instead, the characteristic function
for the chain is found as

bN(Z) = $ exp [i?(t)ZJp(O) H dx (0) dp(0) (13)

where Z is a 2N-dimensional Fourier-transform vector. The inverse Fourier
transform gives PN( Y) directly as

PN() = $ exp [— i2Y]4N(Z) H (dz/2ir) (14)

The actual integrations yield the result

pN(Y) = (2ic)(det W) exp [—VW' Y/2] (15)

where W is the covariance matrix given by
W = (l4',) ='(<yy>) (16)

and the ys are the components of Y.
The reduced Liouville function pN(Y), a function only of the system co-

ordinates and momenta, is the correct distribution to represent the state of
a system interacting with a heat bath. A Gibbs entropy can be written in
terms of PN as

SN = —kJpN(Y)ln[h"TpN(Y)] 1dxdp (17)

where h is. for classical purposes, a constant with units of action, required to
make the argument of the logarithm dimensionless. Substitution o PN
from equation 15 into equation 17 yields

SN = NkB + kBln {h_N(det W)] (18)
where h h/2ir. Thus SN is seen to be given entirely by the covariance
matrix W, the elements of which are time dependent, as in SN. Specific results
for the weakly-coupled, harmonically bound chain are given in Section 4.

4. RESULTS

For simplicity, it is assumed that the initial variances of the system satisfy
the relation

52/2m = mQ2cx2/2 = kBTO/2 (19)
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where T0 is regarded as the initial temperature of the system. The covariance
matrix W is now written

(20)

where M = (M3), etc., and !',f = (x(t)x(t)>; Q <p(t)p(t)>, and= <x(t)pXt)>. After some modest algebra, these matrix elements are
found to be:

= (kB/mQ2) {Tbö + (T0 — Tb) (1, N; n — 1, n — j) cos [(i — j)ir/2]} (21)
= {kB(To — Tb)/Q) (1, N; n — i, n —j) sin {(i —j)ir/2] = —G1 (22)

and

Q = (mCi)2 (23)
where the parenthesized expression denotes

(a, b; c, = na J(yQt)Jd(yQt) (24)

and the sum is always over the index n, which must appear in c and d. We
may now write

det W = det ) = (mQ)2Ndet (24)

The final matrix of equation 24 may be written as a sum of direct matrix
products:

(M )
= M < ( ) + (G/mQ) X (°

1
(25)

Rotation in 2 x 2 space to diagonalize the final matrix of equation 25
permits equation 24 to be written

det W = (mQ)2N det (M
+ iG/mQ

iG/mQ)
(26)

But (M + iG/mQ) is Hermitean, and det (M + iG/m) = flAt, where the A
are all real. Therefore we obtain

Idet W (mQ)'' det (M + 1G/mQ) (27)

with the matrix elements given by

(1W + iG/mQ) = (kB/mCi2) { 7',,t + (T — T,,)(1, N;
n — I,n — j) exp [i(r — s) it/2] (28)

Since the coefficient of T0 — Tb in equation 28 is a finite sum of Bessel-
function products that vanish as t -+ cc, the matrix M + iG/mQ is seen to
become scalar, and the equilibrium entropy is given by equation 18, as
It —÷ cc, as

SN = Nk8 + Nk8 In (k87,/hQ) (29)

the correct canonical entropy for a system of N independent classical oscil-
414



ENTROPY OSCILLATION AND THE H THEOREM

lators. At t = 0, the matrix is also diagonal, and the initial entropy is easily
seen to be

SN(0) = NkB [1 + In (kBTo/hQ)] (30)

Thus the entropy correctly evolves from its initial value to the final equili-
brium value, in accordance with the expectations implicit in Gibbs's formu-
lation of statistical mechanics.

The temporal evolution of SN is most easily presented in terms of a tem-
perature function T(N, t), such that T(N, 0) = T0 and T(N, cc) = Tb, but at
other times the function is to be regarded only as a mathematical convenience.
In terms of T(N, t), SN can be written as

SN/NkB = 1 + In [kBT(N, t)/hQ (31)

where T(N, t) is calculated from equations 18 and 27. The results for the first
fewNsare:

T(1, t) = Tb + (T0 — Tb)J(yQt) (32)

T(2, t) = Tb + (T0 — Tb)(J + J) (33)

T(3, t) = [{Tb + (T0 — 1) [2J + (J0 — J2)2]} {T + Tl(T0 — Tb)

x [J + 2J + (J0 + J2)2] + (T0 — Tb)2 [J(J + J)
+ 2J(J0 + 2J2)] }]}+ (34)

and

T(4, t) = { [Tb + (T0 — Tb) (J + J + J + J)]
x [Tb + (T0 — Tb)(J + 2J + J)] — (T0 — Tb)2J(JL + J3)2}2
+ {2(T0 — Tb)4J(Jl + J3)2 (2J0J2 — J + J1J3)2}
+ {(T0 — Tb)4 (2J0J2 — J + J1J3)4} — {2[7, + (T0 — Tb)

x (J + J + J + J)j [Tb + (T0 — Tb)(J + 2fl + J)]
x (Tb — T0)2 (2J0J2 — fl + J1J3)2}]I (35)

where the arguments of the Bessel functions are all yQt. These temperature
functions become increasingly complicated as N increases, with no apparent
general expression or simplification. The first three are shown in Figure 2.
The single-particle temperature function T(1, t), which could reasonably be
called the temperature of the system, starts at T0, increases to Tb when
yQt = 2'405, and bounces back to lower temperature, returning to T, at
successive zeros of J0. These pre-equilibrium swings to T = Tb, with
subsequent bounces, seem to be at odds with the ideas of the H theorem
and with the simplistic time's-arrow' concept of entropy. The reason
for this behaviour is clear, however, when one realizes that when Jo 0,
the system's initial conditions have (at those instants) no influence on its
behaviour, and its motion is determined entirely by the initial conditions of
heat-bath variables. At other times, the system's initial influence on the heat
bath returns from the heat bath to reduce its temperature, but ever more
feebly.
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The two-particle system shows no bounces of the temperature function,
since J + J is a monotonic non-increasing function of its argument, but
the slope of T(2, t) is zero at values corresponding to the zeros of J1. At no
pre-equilibrium time is the two-particle system completely determined by
the heat-bath variables, since internal influence is shared. The three-particle
system shows an even smoother temperature function, and it is conjectured
that T(N, t) and SN(t) become increasingly structureless as N increases.

5. DISCUSSION
Boltzmann's H is, except for sign, the conceptual (though not, in general,

the theoretically correct) equivalent of the entropy function. The entropy
exhibited in equation 17 has the property that it evolves from the initial value,
determined entirely by system variables at t = 0, to the canonical equilibrium
value as t -÷ cc. The evolution, except for N = 1 and 2, seems to be suffici-
ently smooth to satisfy the conceptual content of the H theorem, though the
temporal development is somewhat bumpy because of the interaction of
system and heat bath. The evolution is time-reversible at t 0, showing
that from a given set of initial conditions, retrodiction is no better than pre-
diction, and that as the system evolves in either direction of time away from
the initial state, our description of it, PN of equation 14, evolves to a state of
knowledge that can only be described as equilibrium.
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Figure 2. Plots of T(N, z)/T0 for N = 1, 2 and 3, and T,,/T0 = 2, where t =
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