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ABSTRACT

The statistical behaviour of individual phase-space trajectories for non-linear

oscillator systems is demonstrated via computer calculations. These results are

interpreted in terms of a mathematical theorem due to A. N. Kolmogorov,
V.1 Arnol’d and J. Mojer.

L INTRODUCTION

In this paper we investigate the classical motion of oscillator systems
governed by the Hamiltonian

N
H= Y 1oPE+ 0D +o[Va+ Vot ] (1
where N is the number of oscillators, w; are the positive frequencies of the
harmonic approximation, y is the non-linear coupling parameter, and V3, V,,
etc., are cubic, quartic, etc., polynomials in @, and P;. Our intent is to
determine those essential properties of Hamiltonian 1 which are crucial for
irreversibility. In particular, we focus our attention on the individual trajec-
tories of Hamiltonian 1 and seek to determine when most of these trajectories
exhibit stochastic behaviour, by which we mean that a trajectory moves more
or less randomly over a sizeable part, perhaps all, of the energy surface.
From the viewpoint of thermodynamics, clearly most (Q., Pi) sets on a
widely stochastic trajectory would correspond to equilibrium. Thus starting
the trajectory at a disequilibrium (Q,, P,) set would inevitably lead to
equilibrium giving the appearance of irreversibility. Indeed, computer
calculations for simple examples of Hamiltonian 1 show that, under the
proper conditions, the approach to equilibrium is rapid and large deviations
from equilibrium are rare.

It is perhaps most convenient to discuss the stochastic properties of
Hamiltonian 1 in terms of a theorem due to Arnol’d’. Arnol’d rigorously
proves that most (in the sense of measure theory) trajectories for Hamiltonian
1 lie on smooth, N-dimensional, integral surfaces (called tori) embedded in
the 2N-dimensional phase space provided, among other things, that:

(1) either y or, equivalently, the total energy is sufficiently small, and
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(2) the harmonic frequencies do not satisfy resonant frequency conditions of
N N
the form kz ma, = 0 when the integers n, are such that Y |m| < 4.
=1 k=1

Clearly when Conditions (1) and (2) are satisfied most trajectories are not
widely stochastic. The virtue of the Arnol’d theorem for our purposes is that,
to a large extent, it actually delimits the conditions for stochastic behaviour.
Indeed violation of Condition (1) even for N = 2 in general leads to a rather
sudden onset of widespread stochasticity>* as the non-linearity becomes
strong. Violation of Condition (2) for N > 3 leads to widespread stoch-
asticity even in the limit as the non-linearity tends to zero®.

Conditions (1) and (2), when satisfied, yield non-stochastic motion because
they minimize the effects of resonant interactions. In the langage of quantum
mechanics, Condition (2), for N > 3, disallows those resonant, three and
four phonon processes so widely invoked in solid state physics®. Condition
(1) does not allow, the higher order phonon processes to affect more than a
minority (in the sense of measure theory) of states. On the other hand,
violation of Condition (1) and/or Condition (2) gives the non-linear reson-
ances free rein to affect the motion. In order to illustrate these effects, in
Section IT we demonstrate by example for N = 2 that each isolated resonant
interaction serves to introduce new stable and unstable periodic orbits into
the unperturbed classical motion. When two or more resonances overlap
and influence the same trajectory, the system phase space trajectory wanders
over the energy surface being scattered, in a sense, by the randomly positioned
stable and unstable periodic orbits. In Section III, we demonstrate, again
using a simple example, that overlapping, cubic, resonant ‘three phonon’
interactions can yield stochastic behaviour even in the limit as the non-
linearity tends to zero. Section IV then presents our conclusions.

In this paper we actually demonstrate stochasticity only for simple
examples and for small N; moreover, we rely heavily on computer calcula-
tions. We do this without apology. Indeed we wish to emphasize that
irreversibility is not a property requiring infinite N, that irreversibility can
be illustrated using simple examples, and that the computer can perform
highly informative ‘experiments’. Indeed it is the author’s belief that the
computer, guided by analytical considerations, can contribute heavily to our
understanding of statistical mechanics through the detailed study of small
systems.

II. STOCHASTICITY FOR N =2

The stochasticity of Hamiltonian 1 for relatively strong non-linearity can
be illustrated by studying some simple examples for the case N = 2. Let us
begin by considering the isolated resonancet described by

H—_—Jl+J2"‘J%—3J1J2+J§+ﬁJ1J§COS(2(pl—3(P2) (2)

where B is chosen such that the resonant, angle term is small relative to the

+ Hamiltonians 2 and 3 actually violate Condition (2) of Arnol’d’s theorem without yielding
stochastic behaviour. When Condition (2) is violated using only a single or isolated resonance
interaction the system motion is non-stochastic because an isolated resonance always yields
motion on smooth, integral surfaces.
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pure-J terms. Hamiltonian 2 has for convenience been expressed in action-
angle variables and the cosine term represents the resonant ‘five phonon’
interaction 22, 2 3. Here Q, and €, are the initial condition dependent,
non-linear frequencies of the motion for § = 0. When N = 2, it is possible
to completely survey the motion generated by the Hamiltonian using
graphical methods, and we now describe these methods and present results.

Since the Hamiltonian H is a constant of the motion, each system trajectory
in the four-dimensional phase space is confined to a three-dimensional
subspace. Let us now imagine that this three-dimensional subspace is
intersected by a two-dimensional plane, called a level curve plane®* If a
system trajectory is stochastic then its intersections with this plane will
consist of a set of randomly scattered points. If the system trajectory is non-
stochastic, ie. the system trajectory lies on a two-dimensional integral
surface, then the intersection points with the plane will form a curve, called
a level curve. Plotting the level curve plane intersections for a representative
sampling of trajectories will thus reveal the general character of the motion.
In Figure 1, we plot a typical level curve diagram for Hamiltonian 2. Were

Figure 1. Typical level curves for Hamiltonian 2 showing the distortion in the § = 0 level curves
due to an isolated resonance.

B = 0, the level curves would be circles centred on the origin ; the 2Q, € 3Q,
resonant interaction distorts the f = 0 level curves in a relatively narrow
region of the plane by introducing the new stable (three central invariant
points of the crescent regions) and unstable (three self-intersection points)
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periodic orbits shown. The level curve plane for Hamiltonian 2 exhibits only
non-stochastic trajectories because the additional integral I = 3J, + 2J,
confines all system trajectories to lie on smooth, two-dimensional integral
surfaces.

Next we consider the isolated resonance described by

H=J,+J,—-J2-3JJ,+ J} +aJJ,cos 20, — 2¢,) 3)

where the pure-J terms are the same as in Hamiltonian 2 and where « is
chosen such that the resonant angle dependent term is small relafive to the
pure-J terms. This angle dependent term represents the resonant ‘four
phonon’ interaction 22, 2 2Q,. A typical level curve plane for Hamiltonjan
3 appears in Figure 2. Here again the resonant interaction has distorted the

Figure 2. Typical level curves for Hamiltonian 3 showing the distortion of the & = 0 level curves
for an isolated resonance.

o = 0 motion by introducing stable and unstable periodic orbits, but located
in a different part of the plane. Also here again the additional integral
I =J, + J, ensures smooth level curves everywhere. In Hamiltonians 2
and 3 as o and f increase from zero, the widths of the resonant, crescent
regions also increase from zero. Consequently, one anticipates that if both
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interactions acted simultaneously they might overlap for @ and g sufficiently
large. We thus now consider the doubly-resonant Hamiltonian

H= ']1 + J2 - Jf - 3J1J2 + J% + OCJ1J2COS(2¢1 - 2(P2)
+ BJJicos 2oy — 39;)  (4)

In Figure 3 we show the computer obtained level curve diagram typical of
Hamiltonian 4 when « and § are small. Figure 4 shows the computer calcu-

Figure 3. Typical level curves for Hamiltonian 4 for relatively small « and B. Here the two
resonance regions do not overlap.

lated level curve diagram for « and f sufficiently large that resonance overlap
occurs. The isolated dots represent intersection points for a single, stochastic
trajectory. As a and f are increased further or as the energy is increased, the
stochastic zone increases in size until it almost completely covers the allowed
regions of the plane. This stochasticity, due to resonance overlap, here
illustrated for the simple Hamiltonian 4 is in general characteristic of
Hamiltonian 1 when the non-linearity is large.
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Figure 4. Level curves for Hamiltonian 4 for values of « and f§ such that overlap occurs. The
isolated dots are the intersection points for a single trajectory.

III. STOCHASTICITY FOR N =3

In order to illustrate that stochasticity can occur for Hamiltonian 1 even
in the limit as the nonlinearity goes to zero provided N = 3 and Condition

(2) is violated, we choose to consider the doubly-resonant, three particle
Hamiltonian

H=J+2J,+ 3J3 + y[aJJ5cos 2o, — ¢,)
+ PJ1J T3 cos (@ + @2 — 93] (5)

where the harmonic frequencies @, = Jw, = Jw; = 1 and these non-linear
terms were chosen in order to illustrate the effect of resonant ‘three phonon’
interactions. In particular the a-term represents the 2w, 2 w, process while
the B-term represents the (w; + w,;) & w5 process. In order to show that
stochasticity can persist even as the non-linearity goes to zero, i.e. as y goes
to zero, we introduce the time dependent canonical transformation

Jy=JnJy=JJ03=17; (6a)
Q1=01+ 0, =0, +2t,03=P3 + 3t (6b)
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Hamiltonian 5 then becomes

H = y[ad T} cos 2@, — @) + BUJT3)*cos(@y + @2 — @3) (D)

Since y is merely a multiplicative factor in Hamiltonian 7, we see that y
affects only the time scale of the motion and not its stochasticity. Moreover,
since I = J, + 2J, + 37, is a constant of the motion for this simple Hamil-
tonian, we may reduce the problem to one having two degrees of freedom
and thence determine stochasticity using level curve diagrams. In Figure 5
we plot typical computer obtained level curves for two different initial

Figure 5. Typical level curves for the reduced Hamiltonian equivalent to Hamiltonian 5. The

upper half-plane shows the level curve for one trajectory, and the lower half-plane shows the

dots of intersection belonging to another single trajectory. This plane is invariant as y tends to
Zero.

conditions using the reduced Hamiltonian equivalent to Hamiltonian 5.
Since here the level curves only fill a semicircle, we plot the level curve for
one trajectory in the upper half-plane and the level curve for another
trajectory in the lower half-plane. Since y only determines the time scale for
these level curves, Figure 5 is invariant as y tends to zero, excluding y = 0 of
course. The bottom half of Figure 5 exhibits the highly stochastic orbits
which can occur. Detailed calculations® reveal that, depending on the ratio
(o/B), as much as 70 per cent of phase space for Hamiltonian 5 contains
stochastic trajectories. Moreover, since the number of overlapping, resonant,
cubic interactions increases very rapidly with increasing N, one anticipates
that the case N = 3 yields the minimum stochasticity.
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IV. CONCLUSIONS

In this brief paper, we have attempted to illustrate, using simple examples,
that stochastic behaviour characteristic of all non-linear oscillator systems
obeying Hamiltonian 1. Stochasticity arises from resonance overlap which
can occur for N > 2. Stochasticity occurs for relatively large non-linearity,
almost regardless of the values of the frequencies in the harmonic approxi-
mation, due to the overlap of individual, non-linear resonances of various
order whose widths are large because the non-linearity is large. For extremely
small non-linearity, only the cubic ‘three phonon’ or possibly the quartic
four phonon’ resonances can overlap provided N > 3 because the width
of these resonances, which depends primarily on the suitably commensurate
harmonic frequencies, can remain large even when the non-linearity is small.
Said another way, if we specify the system ‘state’ for these non-linear
systems by giving the ‘energy’ of each oscillator, we observe that an initial
individual state is resonantly coupled to that density of final states envisioned
by the quantum mechanical Golden Rule’ as leading to irreversible be-
haviour. Moreover, the stochastic irreversibility discussed here is an inherent
property of the mechanical equations of motion. This irreversibility occurs
provided that there is widespread resonance overlap, and no additional
assumptions of a non-mechanical nature are needed. Thus one has here that
beginning understanding of the ultimate source of irreversibility which can
contribute significantly to statistical mechanics.
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