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ABSTRACT

Beginning with the statistical description of the results of a duplicated experi-
ment as a set of configurations of some observables together with frequencies
of occurrence of each configuration it is shown that an evolution of the system
by a stochastic process is obtained when the conditioning parameters of the
experiment are altered. It is then shown that any such stochastic process has a
representation in terms of linear operators in an abstract vector space with a
state vector evolving by an isometric operator S and commuting Hermitian
operators representing observables which evolve by another, unitary, operator
U. This has the structure of conventional quantum theory as in the interaction,
or Dirac picture, but here S is not unitary as in conventional theory. This is
shown to yield a matrix of transition probabilities that is not doubly stochastic
as in conventional theory and hence the Pauli master equation does not follow.
All implications of this completely irreversible quantum theory have not yet
been fully explored, but it points to a new viewpoint in irreversible

thermodynamics.

INTRODUCTION
A recent series of papers has developed the idea that much of the formal
mathematical structure of physical theory can be deduced directly from the
statistical properties of experimental data. The present paper presents that
portion of these studies which bears directly on the problem of irreversible
physical processes; specifically we point out what appears to be a major
flaw in conventional quantum theory and exhibit the proper connection of
the quantum mechanical evolution of states to a stochastic process.

DUPLICATED EXPERIMENTS AND TIME
We consider a duplicated experiment with a physical system in which

certain parameters are given fixed values and selected properties of the system
are measured. Thus suppose that in order to duplicate exactly the conditions
of the experiment we must fix values for q1, q2,. .. q and , i, . . . tj; then
values of (x, y, z,...) are measured. Distinct results are represented by sets
of numbers, say r = (x, y,, ;, . . .), n = 1, 2, 3, . . . (1)
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such that two results, r and rm, are distinct, r1 rm, if they differ in one or
more entries. The variables of r are not all independent, say z may be com-
puted from measured values of x and y. Thus if r contains M independent
variables the index n is equivalent to M distinct indices, n1, n2,.. n.

If the experiment could be exactly duplicated N times and a particular
result r were obtained N times then we would define the probability for
r as

= limit- (2)
N—*co —

Thusa sequence of exact duplications would be summarized as a set of results
r,, n = 1, 2,. .. , and a corresponding set of probabilities, 11,, n = 1, 2,..
In general the spectrum of results is determined by the conditioning para-
meters, that is x(q, ),y(q, ii),... are functions of the q1 and i, and the
probability is conditioned by the q and that is, H(q, ).

This statistical description of an experiment does not preclude an exactly
deterministic system for which

(1, n=n'(q,i')fl = = (3)
1.0, nn(q,ij)

but we maintain a general statistical description in which II,, is not a Kronecker
delta.

In reality not all parameters which may condition the outcome of an
experiment can be identified and fixed by the experimenter and it is for this
reason that we employ a notation indicating two groups of conditioning
parameters, those q1, q2,... q which are identified and fixed and thoset which are not fixed. Therefore we introduce a one-parameter
labelling (t) = i, i = 1, 2,. . . J such that

= (t)dt, i 1, 2,... J; dt 0 (4)

are never all zero. Thus we acknowledge the fact that the external universL
is always changing and introduce the notation x(q, t), y(q, t),. ..and fl,, (a, t)
for the spectral values of observables and their corresponding probability.

Here t is defined as the time5.
Here we have one description of a duplicated experiment in which the

results are explicitly identified as time dependent; we may then investigate
further the question of whether duplication then has any real meaning, i.e.
when not all conditioning parameters are fixed. But an alternative is to
consider a time-ordered sequence of measurements of the observables
r = (x, y, z,...) while those q1, q2,... q accessible to control are fixed.
Thus using any one of the n, which is never fixed, as the time-ordering refer-
ence [solve this = ,(t) for t] we may consider the possibility of defming a
probability

P(rfl(1) —÷ r,1(2) ... —* Tn(N) q)

for the time-ordered sequence of results; r(1) —* r(2) —+ ... —÷ rfl(N); i.e. r(1)
is observed at time t1, r(2) at t2,. . . etc.
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In order properly to define such a probability in mathematical terms it is
necessary to construct an event space which forms a sigma algebra and a
sigma additive measure over this space. In another paper it is shown that
such a probability can be properly defined6 if one introduces a certain
equivalence relation between paths'. Thus the sequence of results
r(1) — r(2) -+... -+ rfl(N) is a 'simple path'; a compound path is

r(l) —p r(2) —+... -+ (rfl or rfl(k)) —* ... —+ rfl()

that is, at the kth measurement we are only able to say, either rfl(k) or rfl(1)
occurs. The equivalence relation that is introduced is

[r(1) —÷r) --4 ... —> (rfl or rfl(k)) —÷ ... —÷ rfl()]

= [r(1) r) ; ... - rfl() — ... — rfl()] (5)

or [r(1) r(2) . . . ... r]
That is, the probability for the compound path is required to be equal to
the sum of the probabilities for the two simple paths; this defines the
equivalence of paths.

With the conditional probability defined by

P(r,(l) r,1(2) .. C .. r,1(N)q, C(1) C(2) .. — rfl(J) .. Cfl(N)

— P(rfl(l) r(2).. rflU) .. rfl(N)q)
(6)

where Cu) stands for [rlU), or T2U) or T3U) or.. .1.that is some result at t, and
the above equivalence relation, one obtains, by summing over the spectra
of n(1), n(2), . . n (N — 1), the form,

fl(q, tN) = m1 7;H(q, t1) (7)

where II(q, tN) is identified as

fl(q, tN) = P(C(l) —+ C2 — ... —+ CN_1 —* rfl(N)q) (8)

That is, the probability that some result is obtained at each of t1, t2,.. tN_ 1
and the specific result rfl(N) is obtained at tN.

Thus a consideration of a time-ordered sequence of measurements leads
naturally to a description of the time evolution of the system as a stochastic
process. Shortly we will see that this description of time evolution of a system
is arrived at by another argument, but first we point out a direct connection
of this description to an operator formalism like quantum theory.

PROBABILITY FUNCTIONS IN 12 AND THE STOCHASTIC
OPERATOR

The probability functi is introduced above have the properties

fI(q, t) 0 (9)

7m0 (10)
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together with

H(q, t) = 1 (11)

and

n1 m 1 (12)

both of which must be identities valid for all q and t configurations.
Because of the non-negative properties of FI, and Tnm we can introduce

complex functions c,(q, t) and K(q, t) such that

fl(q, t) = c(q, t) cjq, t) (13)

and

Tt(q, t) = K:(q, t) K(q, t) (14)

Then equation 7, with tN = t, t1 = 0 appears as

c(q, t) c,3(q, t) = K(q, t) K(q, t) c,,(q, 0) cm(q, 0) (15)rn-I

Since the phases of the cjq, 0) and K(q, t) are arbitrary these can be
chosen such that

c (q, t) =
m>1

K(q, t) cjq, 0) (16)

as is proved in the appendix theorem of an earlier paper2.
Because the sequences c(q, t), K(q, t), n = 1, 2,. .. , are square summable

these have a representation in terms of an abstract vector space and we have
here

c(q, t) (nq, t> (17)
and

Knm = <nFKFm>
(18)

<rnIK Krn>2
where K is an abstract operator. These inserted into equation 16 yield

<nq, t> = <mq, 0> (19)
rn1

or

q, t) = S q, 0> (20)

where

S=KD (21)

with D being the diagonal Hermitian operator

D= 'cy (22)
L <rnKtKIrn>
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Thus the stochastic evolution of states leads directly to the evolution of a
representative state vector by an operator S. In other papers4'5 we have
shown that

StS==I (23)

but in general

(24)

unless K is a unitary operator. However, no special properties for K need
be specified, nor for D either. If D1 exists, then using equation 21 K is given
by SD 1, but D1 exists only if KK is a diagonal operator and the deter-
minant, ID , exists; this requires that

_2lnIDI=m>;iln<mIKtKIrn> (25)

be a convergent series. We also show elsewhere6 that S has a semi-group
property. Thus S is an isometric operator for an arbitrary operator K but
may be a unitary operator if K is itself a unitary operator, i.e. equations 23
and 24 define an isometric operator. One can readily verify that equations
11 and 12 are identically satisfied by virtue of these forms.

If we define another abstract operator iv acting in this vector space as a
Hermitian operator having a complete set of eigenvectors In>, n 1, 2,.
spanning the space and eigenvalues H,, (q, t), n = 1, 2, . . , that is,

fl(q,t)n),n = 1,2,... (26)

then we can show that5

ir(q, t) = Siv(q,0) St (27)

is isomorphic to equation 15 and hence is the representation of the stochastic
process in the abstract vector format.

This analysis, which proceeds from a consideration of a time-ordered
sequence of measurements to the representation of the evolution of the
system by an isometric operator in an abstract vector space. fails to indicate
how observables are to be represented in the formalism; another approach
yields this5.

OBSERVABLES AND THEIR OPERATORS, AN ALTERNATE
VIEWPOINT ON TIME EVOLUTION

Since H(q, t) can be represented as c: (q, t) c,(q, t) we see that the expecta-
tion value of any observable is given by

= x(q, t) c (q, t) cjq, t) = CXC (28)

where the xjq, t) are the measured values of x corresponding to the distinct
results r. Some x(q, t) may thus be equal. Here a matrix notation is intro-
duced with C being the column matrix with elements cjq, t) and X the
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diagonal matrix with elements x(q, t). Also the norm condition, equation
11, appears as

CtC=1 (29)

These forms follow directly from nothing more than the non-negative
property of fI(q, t). Since equation 29 can also be written for any other
observable, say y, we see that each observable is represented by a diagonal
real matrix and these are all of the same order. Furthermore all diagonal
matrices commute, that is

XY—YX=O (30)

for example.
Since this, as well as equations 28 and 29, is invariant under unitary

transformation, say
C, = VC, X' = Vxv, Y' = VYVt

with V a unitary matrix, we see

C'tC' = 1, <x> = C'tX'C', X'Y' — Y'X' = 0 (32)

and hence in an arbitrary basis the collection of all observables is represented
by a collection of commuting Hermitian matrices. This result is completely
independent of any arguments about the time evolution of the system, it
rests solely on the definition of an expectation value and the non-negative
property of a probability.

However, these same forms can be written for any values of the q and t, say
with the q and t replaced by q + '5q and t + &. Thus in a matrix format

CC6 = 1, (x>8 = XY8 — Y8X = 0, etc. (33)

where the (3 subscript indicates the incremented arguments.
Then we introduce linear transformation matrices K and U such that

C = KG, X8 = UXUt, etc. (34)

where X as well as X must be diagonal. Furthermore, in order to preserve
commutation5 of spectral matrices, every spectral matrix must be trans-
formed by the same U and we must have*

UtU=I (35)

Thus U must be an isometric matrix and X and X must in general be of
different order.

However, if we demand that as all (3q -+0 and (3t —+ 0
limit X = X (36)

then it can be shown5 that U must be unitary and in particular, for infinitesi-
mal (3q and öt,

U = I + i P(i)(3q — iHöt (37)

At the time of this writing we have recognized that U U = cI with a scalar is sufficient
so further generalization of the theory is possible.
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where the P and H are commuting Hermitian matrices. Then every spectral
matrix, as X above, must be of a fixed order and all must commute with U
to remain diagonal. Thus the spectral matrices of all observables commute
with the p) and H, and the pU) and H themselves correspond to observables.

On the other hand we have no basis for requiring C —*C as all öq and &
go to zero because these quantities contain an arbitrary phase. We point
out that the unit norm condition in equations 29 and 33

CtC = 1, CC = CtKtKC = 1 (38)

does not require K to be unitary or even isometric, because K is uniquely
related to C and KtK inserted into any other matrix product need not leave
the product invariant. Equation 38 is satisfied if we impose the less stringent
condition on the elements of K,

> = 1 (39)

and choose the arbitrary phases of the cjq, t) such that5

c(q, t) c1(q, t) = 0 (40)
I mm—1

Then using equation 34 relating the c(q + 5q, t + &) to the c,,(q, t) we find
that equation 15 is obtained simply by setting t = 0 and & = t.

Thus we find the KmK,,,, to. be the transition probabilities in a stochastic
equation and again the state of the system evolves by a stochastic process,
but now with translation of the q as well as t. This alternate analysis is
explored at length in another paper5.

Most significant is the fact that the state matrix C evolves by one matrix
K, for which no special properties are postulated, beyond equation 39, while
spectral matrices, like X, evolve by a different matrix, U, which must be
unitary or at least isometric.

Carried over to the abstract vector picture we find that in addition to the
operators S, D, K aad it defined above, we also have a Hermitian operator
corresponding to each observable in the experiment, as X for example, and
these all commute. We also have the unitary evolution operator U expressed
in terms of commuting Hermitian operators P3, j == 1, 2,.. . K and H, as

u = exp{iii —

iH&} (41)

In general iv does not commute with the P and H, but operators of all
observables, as X for example, must commute with U and hence with the
P and H as well. In particular, we have from equation 34

X = UXU (42)

in the abstract operator format and this yields

3X ax— = HX — XH, — i — = PX — XP (43)at aq
and we see that no operator containing the q and t as parameters may
represent a proper observable.
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IRREVERSIBLE QUANTUM THEORY
What we have here is simply an irreversible quantum theory; the iso-

metric operator S yields a unidirectional evolution of the state vector, but
operators of observables evolve by the unitary operator U. This is essentially
the format of the interaction, or Dirac, picture of conventional quantum
theory with states evolving by S and observables by U, but here S is not in
general unitary.

In this regard we note that from equations 14 and 18 the transition
probabilities are given by

<niKim> (miKtin>
t (44)

<mIK Kim>

and this is not a doubly stochastic matrix as in conventional quantum theory

unless the operator K is unitary. As already noted, S is unitary jfK is unitary,
and in fact S is then equal to K and we then have the expression familiar to

us in conventional quantum theory. The stationary states of quantum theory
are those for which S = K = I, for then Tnm ônm is the identity; i.e. there
are then no transitions.

CONCLUSION AND DISCUSSION
At the time of this writing we have not yet constructed an isometric

operator S appropriate to a particular system to illustrate the application of
this irreversible quantum theory because the formulation does not yield a
general format for the construction of such an operator. Even so we can
draw a few specific conclusions. For example, the usual form of the master
equation7, which is based on a unitary evolution operator for states and
hence a doubly stochastic matrix of transition probabilities, must be at best
only a good approximation to the proper description of the time evolution
of the state probability. Furthermore, having shown that there is a direct
logical derivation of this formalism from nothing more than the statistical
properties of experimental data we open the way to further generalizations
of the theory.
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