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ABSTRACT

The development of the thermodynamics of irreversible processes is outlined
with a review of recent work and a discussion of the application of these
concepts to physicochemical, biological and hydrodynamic phenomena.
The extension of local thermodynamics to include a theory of stability and of
fluctuations receives attention. The author concludes with remarks on the
stability properties of chemical reactions in open systems and comments on
the possible implications of results in the interpretation of fundamental
biological phenomena.

1. INTRODUCTION

Classical thermodynamics deals with transformations involving equi-
librium states. Once the validity of the second law is admitted, one considers
exclusively systems which have already reached thermodynamic equilibrium.
The behaviour of these systems is then completely described in terms of a
set of state functions, the thermodynamic potentials, whose extremal proper-
ties determine both the equilibrium state itself and its stability properties®.

Many attempts to enlarge equilibrium thermodynamics in order to include
irreversible changes have been made since the second law was formulated in
the middle of the previous century. The early considerations were, however,
restricted to the treatment of very special irreversible processes, such as
thermoelectric effects. In addition, although a number of scientists such as
P. Duhem? had already conceived the beginnings of a macroscopic physics
embracing both equilibrium and non-equilibrium phenomena, it was only
recently, and particularly during the last twenty years, that we have witnessed
the firm foundations and the rapid growth of the thermodynamics of
irreversible processes. The present object will be to present a review of
recent developments in irreversible thermodynamics and to discuss the
application of these concepts to the study of physicochemical, biological
and hydrodynamic phenomena. The first point to explore will therefore be
the following. Is it possible to extend the methods of classical thermodynamics
to treat all possible phenomena starting from close to equilibrium states
and including arbitrary non-linear situations? In fact we will answer this
question by defining a set of conditions which will guarantee a first extension
of thermodynamics to non-equilibrium situations. It is not claimed that
these conditions apply to all irreversible changes and it is quite possible that

379



G. NICOLIS

a consistent thermodynamic theory could be set up under less restrictive
conditions.

Let any given thermodynamic system be divided into microscopically
large but macroscopically small subsystems each having a given volume V.
We also assume that it is meaningful to specify at any given moment in the
subsystem the internal energy content, E and the mole fractions, n; of species
i. At equilibrium the thermodynamic quantities such as temperature T,
pressure p, chemical potential u; of component i, entropy S, are well-defined
quantities depending on E, V and n,. If now equilibrium does not hold, it is
necessary to re-define all these quantijties. We assume that T, p, y; and S for
each subsystem of a globally non-equilibrium system depend on E, V and n;
in exactly the same way as in equilibrium. In other terms, one proceeds as if
equilibrium prevailed in each subsystem separately. This is known as the
assumption of local equilibrium. Analytically, this implies first that a local
formulation of non-equilibrium thermodynamics is possible. And secondly,
that in this formulation the local entropy will be expressed in terms of the
same independent variables as if the system were at equilibrium. In other
words, if ns is the entropy density, ne the energy density, and v the specific
volume the well-known Gibbs relation will hold locally :

s = s(ne, v, n)
T d(s) = d(e) + pdv — Z/,ti dn, (1)

The local formulation of irreversible thermodynamics based on equation 1
has been worked out systematically by Prigogine®. A few years later the same
author established the domain of validity of this local equilibrium assump-
tion by showing that it implies the dominance of dissipative processes over
purely mechanical processes. In more specific terms, at a given point, the
molecular distribution functions of velocities and relative positions may
only deviate slightly from their equilibrium forms*.

In his original work Prigogine considered the case of weakly coupled
systems (behaving as systems of non-interacting degrees of freedom at
equilibrium). For such systems entropy may be defined in terms of the local
molecular distribution function f;(x, v, t) (x is the position, v the velocity of
a particle) through the Boltzmann relation

ns = —k [dvf, Inf, @)

where k is Boltzmann’s constant.

The extension of Prigogine’s results to the case of strongly coupled systems
is not trivial, due to difficulties in defining entropy for such systems in terms
of the molecular distribution functions. Recently, however, Prigogine and
co-workers have elaborated a quasi-particle representation of statistical
mechanics which permits description of the thermodynamic properties of
strongly coupled systems in terms of new entities, the dressed particles. In this
representation ns takes the form

ns = —k [dvf, Inf, 6)

where f; is now the one quasi-particle distribution function. In general fiis
a complicated functional of f; due to the interactions. Using now this entropy
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definition J. Wallenborn, M. G. Velarde and the author have extended
Prigogine’s conclusions to strongly coupled systems®. Again it was necessary
to assume that the (quasi-particle) distribution function may only deviate
slightly from its equilibrium form.

Clearly this is a sufficient condition which guarantees the applicability of
the thermodynamic methods. It is conceivable that an irreversible thermo-
dynamics may be constructed based on more general conditions. For
instance, Coleman® has recently worked out a non-local theory adapted to
the study of materials with memory. We do not discuss this approach here
but only focus attention on the local formulation.

It should be pointed out that the local equilibrium assumption permits
treatment of a great variety of problems corresponding to situations far
removed from complete thermal equilibrium. For instance very complicated
chemical reaction schemes with extremely large affinities may be treated
adequately provided that they are not too fast. Similarly all effects described
by the Stokes—Navier equations, including hydrodynamic instabilities, are
within the domain of the local equilibrium theory.

Here we discuss the applications of the theory to non-equilibrium situa-
tions with special emphasis on typically non-linear problems which cannot
even be formulated within the framework of classical thermodynamics. We
first present in section 2 a brief review of the general theory and of its applica-
tions in the linear region. We then discuss, in section 3, the extension of
irreversible thermodynamics arbitrarily far from equilibrium and sketch a
unified approach to problems as different as non-linear transport phenomena,
hydrodynamic instabilities and so on. In section 4 we discuss an extension
of local thermodynamics to include a theory of fluctuations. This is necessary,
especially for a theory seeking to describe unstable situations. The final
sections 5 and 6 are devoted to the study of chemical reactions in open systems
and to comments on the possible implications of the results in the under-
standing of fundamental biological phenomena.

2. GENERAL FORMALISM—THE LINEAR REGION

The starting point is of course the second law of thermodynamics which
deals with the entropy change, dS in a system. Let dS be split into two
parts®. We denote by d.S the flow of entropy due to interactions with the
external world and by d;S the change in S due to processes inside the system,
or entropy production. We have

dS =d.S +dS )
The second law refers to d;S only and reads
dsS=0 )

where the equality applies for reversible changes.
Using the local equilibrium assumption we may now proceed in the
calculation of the entropy production per unit time and volume, o, defined by

d;s
P = ; =
i fdVe (6)
=0
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The calculation consists of developing equation 4 using the Gibbs equation 1
and then substituting de, dv, dn; from the balance equations of mass, mo-
mentum and energy. The final result is®

G=ZJiXi (7)

o is therefore a bi-linear form summed over all irreversible processes i, of
suitably defined flows, J;, associated with these irreversible processes, and of
generalized forces X; giving rise to these flows.

It is clear that, as long as the flows are parameters not related to the
corresponding forces, the equations of thermodynamics do not permit the
explicit study of the evolution of a system subject to well-defined boundary
conditions. It is therefore necessary to combine the general balance equa-
tions with additional, phenomenological laws relating Js and Xs. Now
experiment shows that at thermal equilibrium there is no macroscopic
transport of mass, momentum or energy; as a result all currents J; vanish.
On the other hand the conditions of thermal equilibrium imply the absence
of constraints such as systematic temperature gradients etc. Therefore the
generalized forces X; vanish at the same time as J; do. It is thus quite natural
to assume that, in the neighbourhood of equilibrium, linear laws between
flows and forces will constitute a good first approximation. The pheno-
menological laws will therefore take the form

Ji = ;Linj (8)

where the sum is over (coupled) irreversible processes and the phenomeno-
logical coefficients {L;;} are in general functions of the thermodynamic state
variables T, p etc. Equations 6 define the linear domain of irreversible
processes’' 8.

The coefficients {L;;} cannot be arbitrary. It has been known for a long
time that the diagonal coefficients are non-negative. On the contrary, it was
only in 1931 that Onsager established the first general relations between the
non-diagonal coefficients®. He showed that it is always possible to choose
the flows and forces such that the matrix [L;;] be symmetrical

Lj=L; 9)

These are the celebrated Onsager reciprocity relations which were later
generalized by Casimir to a wider class of irreversible phenomena!®.

The proof followed by Onsager relates concepts as different at first sight
as fluctuations and macroscopic transport phenomena. This was a very
important first step towards a justification of irreversible thermodynamics.
It is remarkable that more recent work on the foundations of thermo-
dynamics has fully justified the original Onsager relations. At the same time
these works, which are based principally on non-equilibrium statistical
mechanics, have established the domain of validity of equations 8 and 9 to
be the domain of small deviations of the momentum distribution functions
from their equilibrium values'!.

" The phenomenological laws 8 together with Onsager’s relations 9 consti-
tute a convenient framework within which one can study a great number of
irreversible phenomena in linear approximation’ 8, Interesting as it is, this
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approach is, however, only a particular aspect of irreversible thermo-
dynamics. The local formulation of irreversible thermodynamics has been
developed in yet another direction—the search for variational principles.
The question one asks is whether there exists a general principle—other
than the second law—characterizing non-equilibrium states themselves in-
dependently of the details of phenomena occurring in the system. In order
to formulate this question quantitatively it is necessary to analyse in some
detail the character of a non-equilibrium state in thermodynamics. In an
isolated system one has d.S = 0 and the second principle implies that
entropy increases until it reaches its maximum value. The system thus tends
more or less rapidly to a uniquely determined permanent state which is the
state of thermodynamic equilibrium. Consider now instead of an isolated
system a closed system which can exchange energy with the external world,
or an open system which can exchange both energy and matter. In this case,
and provided the external reservoirs are sufficiently large to remain in a time-
independent state, the system may tend to a permanent régime other than
the equilibrium one. This will be a steady non-equilibrium state. Now this
régime is no longer characterized by a maximum of entropy (as d.S # 0) or
by a minimum of free energy. In other terms, the variational principles valid
in thermal equilibrium cannot be extended beyond this state. It is therefore
necessary to look for new principles which generalize the concept of a
thermodynamic potential to steady (or slowly varying in time) non-equi-
librium states. To this end we subdivide the domain of non-equilibrium
phenomena into two parts: the region close to equilibrium and the region
of states arbitrarily far from equilibrium. Here we deal only with the first
region, i.e. the linear domain of irreversible processes, and we only consider
systems in mechanical equilibrium.

In his classical work on reciprocity relations® Onsager had already
proposed a variational principle for such non-equilibrium states which he
called the principle of least dissipation of energy. In this principle it is under-
stood that the thermodynamic forces remain fixed and only the macroscopic
currents may vary.

On the other hand Prigogine has shown3:7 that steady states close to
equilibrium are also characterized by an entirely different variational
principle according to which, at the steady state, the entropy production
per unit time is a minimum

d;S/dt = minimum (10)

The interest of this principle is that it implies the existence of a thermo-
dynamic potential, the entropy production, as a non-equilibrium state
function. The physical interpretation of this principle is therefore quite
different from Onsager’s variational principle. In addition, in the least
dissipation principle the flows vary but the forces are fixed, whereas in the
minimum entropy production principle the flows vary at the same time with
the forces and are only subject to the boundary conditions imposed on the
system.

Certainly, both principles determine correctly at the steady state the
distribution of currents and forces in the system. However, we mainly deal
here with the consequences of the minimum entropy production principle
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which was the only one to have been extended beyond the linear domain.
Before we discuss non-linear problems let us outline some interesting aspects
of this principle.

In the first place, it is important to realize that it provides a general
evolution criterion. Indeed, the validity of the theorem of minimum entropy
production together with the second law implies that a physical system will
necessarily evolve to the steady non-equilibrium state and-that the latter
corresponds to a stable situation. On the other hand it can be shown’ that,
under certain conditions, the steady state which, by the theorem, is character-
ized by a minimum of dissipation or so to say by a maximum of efficiency,
is also characterized by a lower value of entropy than at equilibrium: increased
efficiency is thus combined with an increasing complexity of structure (as
measured by the entropy reduction). In this way the theorem of minimum
entropy production provides a link between the concept of ‘structure’
and of ‘evolution’ towards a dissipative state!?.

The interest of these concepts and the possibility of a connection between
them might seem academic in the framework of a linear description of
irreversible processes but it acquires a fundamental importance in the non-
linear region.

3. NON-LINEAR THERMODYNAMICS

For a long time non-equilibrium thermodynamics was confined to the
study of linear problems. There exist, however, a large number of important
and even quite frequently occurring phenomena which cannot be described
by the methods of linear thermodynamics even in a first approximation. For
instance, with chemical reactions it is often necessary to adopt non-linear
phenomenological laws. Also whenever a system is not at mechanical
equilibrium the coupling between dissipative and convective processes leads
to effects of a new type which cannot be treated by the methods of linear
theory.

The extension of the local formulation of thermodynamics to the non-
linear region has been achieved during the last fifteen years by Glansdorff
and Prigogine’ ' 4 In its present form it comprises three essential aspects :
(i) the derivation of general evolution criteria for steady states far from
equilibrium, (i1) the search of thermodynamic potentials characterizing these
states, (iii) the study of stability of these states. We shall now briefly comment
on each of these points separately.

(i) The problem of evolution criteria was solved in two steps, the first
involving a discussion of purely dissipative processes!® the second providing
an extension to systems involving mechanical motion!3 1% 1% The final
result is as follows. In the whole domain of phenomena which are adequately
described by a local theory it is possible to construct a differential expression
d@® depending on the state variables such that

do/dt <0 1y
the equality being applicable at the stationary state. d& is a combination of
dissipative and convective processes. In the absence of convective motion it

can be shown that!?
dd = [dV Y J,dX, = d, 2 (12)
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1.e. d® is the variation of entropy production per unit time due to a change
in the generalized forces. As in the general case the flows J; are complicated
functions of X s it follows that in principle d® is a non-total differential; in
other words d@ does not represent the variation of a thermodynamic state
function. It is only in the limit of linear phenomena and of validity of the
Onsager relations that it becomes the differential of a state function, the
entropy production. In this case the evolution criterion can be reduced to
the theorem of minimum entropy production.

(i1) The fact that d& is not a total differential in the general case gives rise
to the problem of the search for a variational principle. This is a very compli-
cated problem which has only recently been properly formulated. The main
point is to realize that, except in a number of exceptional cases where suitable
integrating factors or suitable classes of transformations make d® a total
differential’* !4, it becomes necessary to formulate an extended variational
principle. This novel point of view gives rise to a function ¥, the local potential
according to the terminology introduced by Glansdorff and Prigogine'®,
which shares some of the properties of the potentials of classical thermo-
dynamics. However, it is necessary to look at ¥ as a functional of two sets
of functions, average ones corresponding to (quasi-steady) solutions of the
macroscopic equations and fluctuating quantities. The extended variational
principle has therefore to be understood in terms of fluctuation theory. The
Euler-Lagrange equations corresponding to ¥ can be reduced then in the
average to the equations of macroscopic physics, i.e. provided at the very
end the fluctuating functions are set equal to their average values.

Certainly, the property of the first variation of ¥ to generate the equations
of evolution is also shared by functionals other than the local potential. For
instance for an equation of evolution

Lu) =0 (13a)
defined in a domain V of the independent variable x, the functional
Y, = 5deuL(ﬁ) (13b)

(where u and # are respectively the fluctuating and average values of u) gives
rise to equation 13a by means of an ordinary variational procedure. If now
the unknown functions u in the local potential and in the functional 13b
are approximated, e.g. by a series expansion, the variational equations
resulting from the local potential or from 13b are both identical to the
equation obtained when 13a is approximately solved by the well-known
Galerkin method?!31#

As a result the Galerkin method gives the same approximations as those
based on the local potential. It can be shown, however, that the extended
variational procedure is supplemented by a minimum property expressing
that the excess local potential is positive definite around the non-fluctuating
state. This fundamental property which is largely responsible for the physical
significance of ¥ has permitted us to establish convergence of the variational
procedure!’. It also made it possible to treat in a unified way many inter-
esting non-linear hydrodynamic and stability problems!8-1°,

(iii) The property of d® not to be a total differential and the lack of a true
variational principle also imply that steady states far from equilibrium are
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no longer characterized by the minimum of a thermodynamic potential As
a result the stability of these states is not always ensured. This separation
between evolution and stability leads thus to the search for independent
stability criteria for states far from equilibrium. Recently a complete
infinitesimal stability theory of non-equilibrium states has been worked
out!4-20-22 The main result is as follows. Within the domain of validity of
the local formulation of thermodynamics it is possible to construct a
negative definite quadratic form

82z = 82 — (V)T < 0 (14)

where s is the specific entropy, v the average hydrodynamic velocity and &
denotes the variation of the corresponding quantity as a result of a fluctua-
tion. It can be shown that whenever the equilibrium stability conditions are
satisfied!, &2s is itself a negative semi-definite quadratic form even around
states far from thermodynamic equilibrium

8% <0 (15)
Moreover, in the limit of small fluctuations,
0/ 5*z2> 0 (16)

in all cases the non-equilibrium state is stable. Clearly this formulation is
closely related to the ideas underlying Lyapounov’s stability theory?3.

The important point is, however, that equations 14 to 16 constitute a
thermodynamic stability criterion. Let us emphasize once more that in order
to derive this criterion it has been necessary to go beyond the fundamental
equation 7 and establish excess balance equations for the quadratic fluctu-
ations, §2s and (dv)?, of entropy and kinetic energy.

Equation 16 contains a complicated interplay between purely dissipative
and convective processes. In the neighbourhood of equilibrium it can be
shown that the stability criterion is trivially fulfilled once 6%s < 0. Alterna-
tively, the existence of thermodynamic potentials guarantees the stability of
near-equilibrium states except in the neighbourhood of phase transition
points. Moreover, it follows from equations 14 to 16 that internal convection
processes can never arise in this limit!3. Far from equilibrium, however,
relation 16 does not follow from 14 and 15 and therefore the stability of the
system may be compromised even when the equilibrium state is perfectly
stable. If an instability occurs the system necessarily tends to a new régime
which may correspond to a completely different state of organization of
matter. Since equilibrium remains stable we may say that unlike what
happens close to equilibrium, this new régime is not a continuous extra-
polation of the equilibrium behaviour.

4. FLUCTUATIONS

At this point the problem of the behaviour of fluctuations becomes quite
essential. In a system characterized by a large number of degrees of freedom,
such as a typical macroscopic body, fluctuations are always present. There-
fore at each moment the system is in a kind of ‘dynamical equilibrium’
which is determined by the response to its own spontaneous fluctuations.
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Usually the fluctuations give rise to a response which brings the system
back to the reference state. On the contrary, at the point of an unstable
transition fluctuations are amplified and give rise to observable effects.
Therefore a new structure which may arise beyond an instability always
originates in a fluctuation. As a result a purely deterministic description of
the system is no longer sufficient and it becomes necessary to extend irre-
versible thermodynamics in order to include a macroscopic theory of
fluctuations.

Let us recall how this problem is solved at equilibrium. In an isolated
system Boltzmann’s relation defining entropy in terms of number of states
available may be inverted to give rise to the classical Einstein formula giving
the probability of fluctuations around a macroscopic (equilibrium) state!-2>.

P oc exp [AS/k] (17)

where AS is the entropy change around equilibrium (AS < 0 for a fluctuation)
and k Boltzmann’s constant. For small fluctuations AS may be expanded to
second order quantities. Since for an isolated system at equilibrium § is a
maximum, equation 17 can be reduced to the second variation term

P oc exp [62S/k] (18)

What is the generalization of expression 18 to non-equilibrium situations?
As we say in section 3 the basic property §2S < 0 which is responsible for the
validity of expression 18 is also shared by fluctuations around non-equi-
librium states provided the local equilibrium assumption is made. It is
therefore tempting to build a non-equilibrium fluctuation theory based, in
a first approximation, on expression 18, wherein the excess quantities are
calculated around a non-equilibrium reference state®>~27. If this conjecture
is justified one will be able to predict the behaviour of fluctuations by
studying 6°S and the way it evolves in time and obtain therefore a relation
between stability properties and fluctuations.

Attempts to justify the local equilibrium fluctuation theory have been
made by Lax?8, More recently Babloyantz and the author have developed
a master equation approach to fluctuations which is applicable to systems
arbitrarily far from equilibrium and to the study of arbitrarily large fluctu-
ations?® 3! In all cases treated the extension of expression 18 to non-
equilibrium situations was recovered in the limit of stable systems and small
fluctuations, provided some well-defined conditions on the relaxation times
were satisfied. These conditions refer to a large separation of time scales
between the fluctuating system and the external world. They require the
former to be much shorter than the latter so that the state of the environ-
ment shall not be influenced by the fluctuating system. This condition is in
agreement with the idea that in order to maintain a non-equilibrium
macroscopic state one should impose a set of given boundary conditions.

The examples studied by Babloyantz and Nicolis refer mostly to chemical
reactions in open systems2® 3! and to energy transfer in a system at mech-
anical equilibrium®°. At present our group is involved in work on the
stochastic theory of fluctuations in the neighbourhood of unstable transi-
tions. It is expected that this work will permit a clarification of the mechanism
of establishment of an instability and of the structure of the final state
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beyond the transition point. Indeed, it is the initial fluctuation which will
determine the type of future situation. The macroscopic time evolution
assumes therefore an essentially statistical aspect.

5. DISSIPATIVE STRUCTURES

In equilibrium thermodynamics instabilities only occur at phase transition
points. The new phase beyond instability has a markedly different structure ;
in particular it may correspond to a more ordered state. For instance at the
paraferromagnetic transition at the Curie point a system exhibiting spherical
symmetry is replaced by a new one having a lesser cylindrical symmetry.
Consequently the ferromagnet which is being formed has a much higher
degree of ‘organization’. Such structures, however, are completely inde-
pendent of the external world. Once they are formed they are self-maintained
and do not require an exchange of energy or matter with the environment.

In systems far from equilibrium a new type of instability appears, due to
the existence of constraints which are responsible for the maintenance of a
steady non-equilibrium state. Can one associate with these instabilities the
formation of ordered structures of a new type? Such non-equilibrium
structures would differ from equilibrium ones in that their maintenance
would necessitate the continuous exchange of energy and matter with the
outside world. For this reason Prigogine, who first suggested the existence of
these states, has called them dissipative structures3? 33,

Let us formulate the problem in thermodynamic terms in its most general
form. Consider a non-isolated system (closed or open) subject to constraints
which give rise to a steady non-equilibrium state. In this state the values of
different thermodynamic variables such as flows etc. depend parametrically
on a number of quantities, { X'} measuring the deviation of the system from
equilibrium. For instance, X may be a gradient of temperature or composi-
tion, the overall affinity of a set of coupled chemical reactions, and so on.
Let us adopt the convention that the state {X = 0} is the state of thermo-
dynamic equilibrium. For {X # 0} but small the equilibrium régime is
continued -by the steady states close to equilibrium whose stability is
guaranteed once equilibrium is stable. On the contrary, for {X # 0} and
arbitrarily large, although it is always possible to define a continuous
extrapolation of the equilibrium régime, the stability of the states belonging
to this branch, which will be referred to as thermodynamic branch, is no
longer ensured automatically. In addition, the uniqueness property of the
equilibrium state is not applicable in this case and the system may present
more than the stationary state, provided it obeys non-linear laws. One of
these stationary states belongs to the thermodynamic branch but is not
necessarily stable. It is therefore possible, a priori, to have a number of new
effects, for instance : the system may not decay monotonically to the steady
state belonging to the thermodynamic branch, once it is perturbed from it;
in the limit it may even never return to this state but evolve to a time-
dependent régime: under similar conditions it may finally deviate and
evolve to a new stationary régime corresponding to a branch different from
the thermodynamic one. This transition will manifest itself abruptly as an
instability, i.e. as a fundamentally discontinuous process.
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This situation is frequently met in hydrodynamics. In this domain the
problem of instabilities is a classical one which has been studied thoroughly
since the early years of the present century!® 36, Recently Glansdorff and
Prigogine have shown that the general formulation of non-linear thermo-
dynamics provides a framework which permits a thermodynamic analysis
of such instability phenomena. They have also been able to formulate their
conclusions in terms very similar to phase transitions. Amongst the different
problems treated let us quote: the onset of thermal convection in a hori-
zontal fluid layer heated from below (Bénard problem); stability of waves
and the formation of shocks and detonations ; stability of parallel flows ; and
SO 0n13, 14,16, 18.

The occurrence of instabilities and the subsequent formation of structures
is a much less obvious effect for purely dissipative systems, i.e. systems with-
out mechanical motion. In fact, it is only during the last few years that this
possibility has been studied systematically and a theory of dissipative
structures has been set up for such systems32:33:35-37, The types of problems
which were studied most actively refer to open systems undergoing chemical
reactions.

This problem presents a special interest because of the possible implica-
tions of the results in the understanding of biological phenomena. Indeed,
typical biological processes appear to happen under open system conditions
(exchange of ions through membrane processes, ADP < ATP transforma-
tions inside the cell and so on). It is therefore tempting to associate biological
structures with dissipative structures arising beyond a chemical instability.

Let us first analyse the non-equilibrium phenomena which may arise in
open systems in the neighbourhood of instabilities. We may distinguish
between three possible types of situation: (i) oscillations around steady
states, (il) symmetry-breaking instabilities and (iii) multiple steady states.

(i) Although oscillations were suggested a long time ago by Lotka and
Volterra3®, it is only during the last few years that there has been a great
accumulation of data on the occurrence of time oscillations in systems of
chemical reactions. Even more interesting, biochemical reactions of funda-
mental importance have been shown to exhibit oscillatory behaviour in
time. Let us quote for example: oscillations in metabolic reactions com-
prising activation or inhibition (glycolysis®®-4%); oscillations in protein
synthesis in the cellular level (B-galactosidase synthesis in Escherichia coli*!
and so on*?). These phenomena have recently been investigated from a
thermodynamic standpoint. It has been necessary to distinguish between
two fundamentally different types of behaviour: oscillations having the
same character as those occurring in conservative systems (Volterra—Lotka
type oscillations*?) and oscillations beyond a chemical instability**. At
present it appears that oscillation in metabolic reactions can best be ex-
plained by the second type of mechanism. In other words, a biochemical
oscillating system would be a dissipative structure.

(i) This conjecture, which suggests the fundamental importance of the
concept of dissipative structure, is also substantiated by the study of
symmetry-breaking instabilities3?:33:35:36-45-47  Thjs term refers to the
spontaneous appearance of spatial structure in a previously homogeneous
system. The important point is that this spontaneous self-organization has
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interesting implications from the point of view of both the space order and
the function of the system. Systems which are able to transform part of the
energy or matter received from the outside world into macroscopically
distinguishable internal order may well exhibit this type of phenomenon
and therefore be typical examples of dissipative structures. Again biological
systems certainly belong to this category. It is therefore very tempting to
associate biological structures with chemical instabilities leading to a
spontaneous self-organization*”.

(iii) A change in functional behaviour may also arise in systems which
keep their macroscopic space order unchanged. As an example a system may
flip-flop between two simultaneously stable steady states which differ only
in the levels of concentration of different constituents. It is well known that
the classical Jacob-Monod model of regulation in protein synthesis gives
rise to such types of transitions which may be associated with ‘mutations™8,
Another very interesting application is in the functioning of excitable
membranes. Roughly speaking, a biological excitable membrane may exist
in two permanent states: one polarized (associated with the maintenance of
different ionic concentrations in the two sides) and one depolarized state
derived from the former upon passage of a pulse or upon a change in perme-
ability. It has been shown that this depolarization process may be quantita-
tively interpreted as a transition arising beyond the point of instability of
the polarized state. This instability is due to the difference in the ionic
concentrations which here plays the role of the constraint keeping the
system in a far from equilibrium state*®.

Summarizing, we may say that instabilities in the thermodynamic branch
of solutions can lead to time or space organization and to a change in
functional behaviour in open systems undergoing chemical reactions. These
instabilities can only arise at a finite distance from thermodynamic equi-
librium, i.e. their occurrence necessitates a minimum level of dissipation.
Structure and dissipation appear therefore to be intimately connected far
from equilibrium. At the same time the system becomes more ‘flexible’ in
this region as it can now occur in a multitude of stable states. This is a very
important property which may well be the basis for a thermodynamic theory
of evolution in biology.

Computer and laboratory experiments have now confirmed the existence
of dissipative structures in certain models**> ¢ and also in particular bio-
chemical®®'4° and organic®®-3! reactions. Of course, much remains to be
done before it becomes possible to evaluate the full impact of the theory in
the interpretation of fundamental biological phenomena.

All these complicated new effects can be and have been analysed within
the framework of non-linear thermodynamics outlined in sections 3 and
414.32,33,43-47.49 1p addition, the stability conditions 14 and 15 provide
sufficient criteria for the types of processes which may give rise to dissipative
structures. Aside from the condition of finite distance from equilibrium it is
shown that non-linear reaction schemes are necessary for the occurrence of
instabilities. This certainly covers the most important biochemical reactions
where non-linearity appears through cross-catalysis, autocatalysis, activation
or inhibition. Additional new information given by the thermodynamic
evolution and stability criteria include: fixation of the direction of rotation
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in cyclic processes around the steady state; hints about the relative increase
of dissipation and energy transfer at the unstable transition point ; and so on.

6. CONCLUSIONS

We have seen that, even beyond the linear domain, thermodynamics may
yield interesting results concerning the evolution of systems to steady non-
equilibrium states and the stability properties of the latter. Non-linear
thermodynamics constitutes a framework for a unified study of phenomena
as different at first sight as hydrodynamic instabilities and the formation of
spatial or temporal structures in chemistry.

One of the most important features of dissipative structures analysed in
the previous section is that they are separated from the thermodynamic
branch by an instability. One can say that there exists a real threshold for
organization of matter determined by a minimum value of the thermo-
dynamic constraint keeping the system out of equilibrium, which value
depends in an intrinsic way upon the parameters descriptive of the system
(kinetic constants, diffusion coefficients etc?).

It would thus be very tempting to think that dissipative instabilities act as
a kind of phase transition leading to a new state of matter. In this new state
we have essentially novel properties of the large-scale system, although the
laws referring to the molecular level may remain unchanged.

It is exciting to realize that the analogy between dissipative and biological
structures may lead to the idea that life and absence of life are just two
states of matter separated by a chemical instability. This point of view
implies that life follows the laws of thermodynamics appropriate to far from
equilibrium conditions. It may therefore help to reconcile the duality between
the living and the inanimate world with the unity of the laws of nature.
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