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ABSTRACT

Although one-sided rate type (differential type) materials have received

attention in the literature, the restrictions which should be applied have not

been finally resolved. The author seeks to clarify this situation, examining first
thermomechanical, and then, thermodynamic, processes.

1. INTRODUCTION

Much recent and not so recent literature has appeared purporting to
treat one-sided rate type materials (materials of the differential type) wherein
the stress and other dependent variables are a function of, say, the deforma-
tion gradient or strain and their nth order higher time derivative.

Other than problems associated with coordinate frame indifference and
material indifference (material isotropy groups)? which have essentially
been solved except for some remaining disagreement on use of improper
rotations® the major problem lies in the thermodynamic restrictions applic-
able to such materials. Two parts of this question need answering. First,
does the second law of thermodynamics in the form of the Clausius—Duhem
inequality (CDI) apply to materials undergoing irreversible non-equilibrium
thermomechanical processes? Secondly, what are the physical implications
of the various initial constitutive assumptions with respect to the type of
material described?

It is intended herein to offer an alternative to the first question and hope-
fully clarify the second.

In essence, it will be shown that one-sided rate type materials depending
on deformation gradients, temperature and temperature gradients, as well
as the higher time derivatives of these quantities will always be reducible to
nothing more than non-linear Kelvin solids showing no relaxation properties.
For materials of this type the inclusion of hidden variables is essential to the
relaxation process (creep, however, can occur without interval variables).

1.1 Notations and definitions

The notations and definitions used herein are similar to those of Truesdell
and Noll’'s NLFT!. We denote vectors and spatial points by boldface Latin
miniscules; q, X . . . Sets, bodies and regions are denoted by script majuscules,
B, R. Tensors (linear transformations) and material points are given in
boldface Latin majuscules, F, T, X. Configurations and mappings are given
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in boldface Greek minuscules, %, & Where repeated indices are used, sum-
mation over 1, 2, 3 is implied. Transpose of F is FT and its inverse is F~ 1.
The trace (spur) is written trA = A,; and the determinant of the matrix
representation of A is detA. Present time is taken as t and previous time is .

We define a body # as a smooth manifold (continuum) of elements
(particles) X whose coordinates in some reference are also X. The configura-
tion y of & are the elements of a set of one-to-one (invertible) mappings of #
into a three-dimensional Euclidian point space & The spatial point x is
called the place occupied by the particle X,

x=7X):;X=71""(x) (L1

and X above is the particle whose place is x.

The region of space, y(%), into which the body is mapped is called the
region occupied by the body £ in the configuration y. The reference con-
figuration, its volume element and its surface area element are Z, ¥, &
respectively. The deformed configuration, its volume element and its surface
area element (where y is not the identity mapping) are r, v, s respectively.

A motion of body £ is a one-parameter family of configurations with the
real parameter t, time. Thus

x=yX,t); X =y~ '(x,t) (12)

We assume the existence and continuity of any derivatives wherever needed.

Critical to the entire theory is the concept of localization. A curve € in #
is deformed by 1.1 into a curve ¢ in r. If dX is an element of arc along €,
using the rule for change of variables in an integral,

{[.]ax*=([.1X%dx* (1.3)
with ¢
X.% = 0X¥/ox, (1.4)

The spatial field dx is thus defined in terms of the material field dX by

dx* = Xk dx* (1.5)
whose solution for dx is
ka = X,kK dXK (16)

In equation 1.6 dx is a field deformed with the material whose determination
requires knowledge of the deformation in a neighbourhood of x.

The x) are the components of the deformation gradient, F. Uniqueness of
1.6 is assured by the postulate of a positive definite bounded volume element
such that

0 <(dv/dV)=J =detF < o 1.7
where p is the density.
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Thus, dx is the vector at x into which the vector dX at X is deformed by
the linear transformation, 1.6.

We shall deal herein only with simple materials, i.e. those whose response
is affected by only F and not its gradients.

We have defined, therefore, the deformation gradient F = GRAD g at
and with respect to X relative to the deformed configuration, r.

The symbol grad - is used to denote the gradient at X with respect to x.

The usual material derivative and spatial derivative definitions are used.

For a homogeneous continuum, considered here. explicit dependence
upon X is not required in any of the ensuing constitutive equations.

Polar decomposition of F results in

F=RUorF=VR ’ (1.8)

where R is an orthogonal rotation tensor and U and V are right and left
positive definite, symmetric stretch tensors respectively.
The right and left Cauchy—Green strain tensors are

C=F'F=1U%B=FF" =V? (1.9)

With « as a reference configuration at time ¢, and x(t) and y(z) the con-
figurations at times t and z, the usual composition of mappings defines the
relative deformation gradient as

F(7) = F(7) F(t)
where
F(z):x — 2(7); Ft): x - x(t); Fo(2): 2(6) — () (1.10)
so that
F ) = Fo) F®~* (1.11)

We may thus express the relative deformation gradient rate evaluated at
present time ¢t as

G
L) = () = - Fo(®)]ece = FO)FO)~* (1.12)

which is simply the spatial velocity gradient
grad x (1.13)

Similarly, the spatial gradient of the nth acceleration is then

(n)
6 o &)
L(t) = 52 —F ) =gradx n=1,2,.. (1.14)

with

t It may be noted that non-simple materials subjectéd to pure homogeneous deformations
are also covered by our restriction.
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Employing polar decomposition on the relative deformation gradient and
differentiating, we can then define the stretching, D, and the spin, W, as

D = Uyt) = 5L + L7

W = Ry(t) = L — L7 (1.15)
D is obviously the symmetric part of L and is sometimes called the rate of
deformation tensor.

A useful relationship is easily derived

. lav
trD = trL = divx = — — 1.16
r T ivx Vit (1.16)
where V is here the present volume.
An inner product A -B can be represented as trA™B. Also

trA™B = trBTA, trABC = trBCA

The Cauchy stress tensor, T = T(X, t) is the stress per unit area in the
deformed configuration. For non-polar materials herein considered, the
usual balance of moment of momenta yields T = T7, hence T is symmetric.
We also define the specific body force b = KX, t) per unit mass as a field
force extended on the body £ at X by causes outside of 4.

The thermodynamic variables to be employed are not in accord with the
1948 1LU.P.A.C. and L.U.P.A.P. recommendations because of the obvious
conflict with the mechanical variables. We define here:

(1) The total internal energy in the body # as E which is an additive set
function of the portions of the body with units (mass) (length)? (time) 2.
The localization of E leads to the specific internal energy, &, at a point X per
unit mass with dimension (length)? (time) L.

(2) The total entropy, N(X,t) as above with its localization to specific
entropy, § = y(X, t) per unit mass.

(3) The absolute temperature, 8 = 8(X, t) which, unless otherwise specified,
is the translational temperature.

(4) The heat flux vector, q = (X, t) whose units are energy per unit area
per unit time = (mass) (time)~ * where an outwardly directed unit normal
vector ii is used, the total flux of heat over an element of body surface area
s is

$,q-nds 1.17)

which by the Green—Gauss theorem yields
{, divqdv (1.18)

with dimension energy/unit time and represents the rate at which heat is
leaving the body surface, s. The integrated heat flux is Q.

(5) The specific heat supply r = x(X, t) per unit mass per unit time absorbed
by the body # at X from external non-conductive sources or internal point
sources (whose existence is not pertinent at this point).
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(6) The internal state vector, ¢ or @, whose scalar components in ¢ =
(@, 9,,... @,)are the internal state variables. This vector may be considered
as a hidden variable wherein it is capable of energy transfer.

2. THERMOMECHANICAL PROCESSES

The notation used above is due to Coleman and Gurtin*. The impetus
for the specific approach used resulted from conversations with R. S. Rivlin
and J. Meixner.

2.1 Energy inequality restrictions

The set of three mechanical functions, motion x, stress T and body force
b with the stated localization of motion plus the six thermal functions listed
above and defined for all particles X in % over all time t is called a thermo-
mechanical process if and only if the set satisfies the usual local laws of
balance of momentum

divT + pb = px 1)
and the balance of energy
pt =T L — divq + pr (2.2)

Thus, a sufficient condition for a thermomechanical process is one wherein
only x, T, ¢, q, 5, @ and ¢ are prescribed and b and r are found from equations
2.1 and 2.2.

Consider now the integral of 2.2 over some finite interval of time which
for convenience will be taken as tg[0, t]. We shall take the state of the body
at all times te(— o0, 0] as a thermomechanical fiducial state wherein we
postulate at all points X and timest * < 0

X, t *) = 0,(X,t *) QX,t*) = Q,(X,t*)
T(X,t *) =0 FX,t*) =1

L=L =.. =LOX t*) =0

gX,t*) = g(X, t ¥)

(2.3)

Equation 2.3 implies a homothermal field. 8, could be taken equal to zero
without loss of generality. Conditions 2.3 and 2.3, imply no initial stress
nor strain, and 2.3 5 implies no motion at times t < 0. Equation 2.3, wherein
Q is the energy per unit volume, simply implies a fiducial state for the heat
content which, without loss of generality, may be taken as Q, = 0.

The relation 2.3¢ is based on the fact that energy may be defined only to
within an arbitrary constant!®. In this case, if we either take @ = 0 and
Q, = 0 implying &, = O or take &, as a fiducial energy level below which we
cannot go by any thermomechanical process, integration of 2.2 then gives

pe(X,t) = fio T-Ldr — [jodivqdr + [} prde, t, < t* (2.4)
We now postulate with the definitions given above
#X, ) =0 (2.5)
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which we call the first inequality of thermomechanics or the energy inequality.
Note that expression 2.5 holds in non-equilibrium conditions.

The thermal implications of 2.5 are rather obvious and perhaps trivial.
Letting no mechanical motion ensue we have from 2.5 and 2.4

— fi,divgde + [/, prdc >0 (2.6)
Letting
— [ div qdr = —AQOUT = AQ™ )

where AQ™ is the amount of energy conducted as heat into the body at time
to. Also we have

[ pr dr=AQ™ (2.8)

which is the amount of energy brought into the body by external radiation.
Then we write for the energy (in the form of heat) in the body at time t,

Qo = AQ™ + AQ™ (29)

During the non-mechanical process from t, to the present time t we have
from 2.4 and 2.9 with t; = 0

pe(X,t) = — |, divqde + |, prdc >0 (210

With the interpretation
a4 — __ AOOUT
|, divqdr = - AQ°UT(t,, 1) 2.11)
fio rdz = AQ(to, ©)

equation 2.10 becomes
—AQT(to, ) + AQ™(to, t) + Qo > 0 (212)

which can be written with AQ™ = — AQ°VUT a5

AQ(to, ) + AQ°V(t,, 1) < Qo (2.13)

Thus, no more net heat may be lost through conduction and radiation over
a time interval than was originally in the body at the beginning of the interval
under zero mechanical processes.

The mechanical implications are given for the condition of no radiation
and no heat transfer over the interval [0, t]. Since these heat processes are
assumed independent in that we can in principle ensure that

[, divg=0; [, prdt =0 (2.14)

this above restriction does not reduce the generality of the results.
Assume for illustrative purposes that the constitutive equation for the
stress tensor, T, is that of a one-sided linear rate type material wherein

T=aB+a,L+aL, +...+a,L, (2.15)
where B = BT is the left Cauchy-Green symmetric strain tensor and the
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L, are the spatial gradients of the nth time derivative of the velocity with
the a, constants. Equations 2.4, 2.5 and 2.14 then are

eX,t)= [, T-Ldr >0 (2.16)
The expression T * L with 2.15 therefore becomes
T-L=a,B-L+a,L'L+ a,L, L+ a;L;-L+... (2.16a)

The first term on the right is then B+ L = trBL and from elementary opera-
tions

trBL = trL™B = tr(FT) ! FTFFT = trKTF (2.17)
The integral of trk’™F = ¥ - F may be evaluated by considering first
0 G,
—trF'F = tr — F'F = 2trf"F (2.18)
ot at

Thus we may write, using the definition of an integral and B = V2 = FF7”,

t t
aB-Ldr = | > it V2dr = R gpy2 - i(ll ~3) (219
© 2 0t 2

where trV2 = trB is the left Cauchy—Green stretch tensor which is strictly
positive definite, hence a, > 0.
The second term, a,L L, in the integral is jtoL Ldr, L(ty)) =0  (2.20)

which, by the basic definition of an inner product is positive definite in the
argument and, hence, the integral is positive definite. Thusa, > 0.

The third term a,L,, - L may be similarly determined using the relation
t

J—a—trLTLdrz jtr(%LEdt:jL*Ldt:Ll (2.21)

ot
Therefore a, > 0. All remaining terms of the form L, *L with n > 2 cannot
be shown to be positive definite for all arbitrary L, and L, hence

a,=a,=..... =2,=0 (2.22)

A comment is in order here. Assuming, for the linear rate expressions of
T, other forms of the strain such as C, the right Cauchy—Green strain tensor
and F, the deformation gradient, one cannot show that a, > 0. Similarly, in
the operations for determining the existence of a,, the velocity gradient L
only enters through its symmetric part L® = 5L + L") = D the stretching
tensor. Thus, the energy inequality restricts the linear rate Cauchy stress
tensor to

to

T =2a,B +a,D + a,L (2.23)

where L{3), is the symmetric part of L.

This result has been obtained without recourse to the second law of
thermodynamics, the CDI, and does therefore hold rigorously in non-
equilibrium conditions. The details were suggested by J. Meixner>.

One may, with considerably more algebraic effort, generalize the linear
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rate constitutive equation used previously as an illustrative example. Using
a theorem of Rivlin®, one may show that the symmetric Cauchy stress
tensor T is expressible as a polynomial isotropic tensor function of, for
example, the left Cauchy—Green strain tensor B and the symmetric part of
the relative deformation gradient rate, D. Then we may express this general
non-linear relationship as

T = 'I’ol + 'lllB + .I’zL + ¢3B2 + ¢4D2

+ ¥ 5(BD + DB) + ¥4(B>D + DB?) (2.24)
+ ¥,(BD? + D?B) + y4(B2D? + D?B?)
where the coefficients ¥, . . . Yz are polynomials of the set of irreducible

invariants of the two symmetric tensors, B and D. The specific form for the
irreducible invariants in this case is

trB, trB2, trB3, trD, trD?, trD3
tr(BD), tr(BD?), tr(B2D), tr(B>D?)

Referring to the energy inequality condition 2.16 and, for simplicity, assuming
on the basis of physical experience that the coefficients ¥, are so slowly
varying with time as to be approximated by constants (an admittedly totally
unwarranted mathematical assumption) it can then be shown by arguments
similar to those previously used herein that

T(B, D) = y,B + ¥,D + y;B% + y5(BD + DB) + y(B2D + DB?)
(2.26)

A more general consideration produces the result, with constant coefficients,

(2.25)

T(B,D) = > aB'+ ) «D)* ™' + 1Ly Y b(D)* (227

In both of the above equations the existence of a rest configuration requires
¥, = 0. One can remove the L,,, dependence in the stress, T, by use of such
schemes as assuming the body force derivable from a scalar potential. How-
ever, this assumption, while removing explicit dependence on L,,, introduces
an implicit dependence on grad grad T and the gradient of the scalar potential.
This device is not to be recommended. Thus, the minimal reduction in
dependent variables obtained by the use of the energy inequality yields for
the Cauchy stress

T = f[B, D, L] (2.28)

An equivalent form is
T =1[B Ay, Ly] (2.29)

where Ay, is the Rivlin—Ericksen? deformation rate tensor related to D
and D,, by

D=3A4, Dy = %(A(z) - %A(zl)) (2.30)
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and toL and L, by

It is this dependence of A;, on LTL which precludes A,,, being compatible
with the energy inequality for the cases considered.

2.2 Material isotropy restrictions

The assumed isotropy of the material and the principle of coordinate
frame indifference requires that any properly formulated physical law be
invariant in form under the pertinent subgroup of unitary transformations.
For our situation, requiring invariance of form under the proper orthogonal
subgroup of transformations G (all real rotations) where det G = +1
precludes stress dependence on L or L, The forms D,, and A, of 2.30
and 2.31 are, however, acceptable. However, the energy inequality restrictions
do not allow the LTL term in the stress equation. Thus, expression 2.29 can
be reduced to a non-linear function

T = f[B,Ay)] (2.32)

We call a thermomechanical process which satisfies the constitutive equa-
tions an admissible thermomechanical process.

3. THERMODYNAMIC PROCESSES

In order to develop the discussion relative to relaxation in one-sided rate
type materials, we shall refer to results of Coleman and Gurtin* without
presenting the details of development.

3.1 Equipresence

We shall employ herein Meixner’s strong principle of equipresence wherein
all constitutive equations shall initially contain the same terms' and each
term shall depend on the same order of the derivatives’. Thus, since B is a
function of F which is GRAD x and A, is, so to speak, F we require the
constitutive functionals for stress, T, heat flux q and any other dependent
variables, P, to be of the form using 2.32

P = P(x,x, F, I, 0,0, grad 0, grad ) (3.1)

where we have not included the internal state variable ¢ as yet.

The material isotropy and the localization postulate immediately eliminate
specific dependence on x, x so that with 2.32 and g = grad relation 3.1
becomes

P= P(Ba A(l)a 0, 07 g’ é) (32)
Note that @ need not necessarily appear since x did not appear. Rather the
gradients and time derivatives of the gradients appear.

3.2 Clausius-Duhem restrictions
While agreeing fully with Meixner’s’ and Rivlin’s® comments regarding
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the absence of thermodynamic validity for the Clausius—Duhem entropy
rate inequality in the differential form

dnp > > de/0 (3.3)

where we use de as the increment of energy addition of any sort, Coleman’s
thermodynamics of non-equilibrium processes rests essentially on the axiom
that 3.3 holds at all times. Coleman* following a standard procedure asserts
that the rate of entropy growth y of a system equals the rate of specific
entropy growth minus the rate of heat addition divided by absolute tempera-
ture. The key axiom is then that the rate of entropy growth, y, is non-
negative'® at every instant of time. Thus

T (R Y

Defining the Piola—Kirchhoff non-symmetric stress tensor asS = p~'T(F") !
in order to remove conveniently the term p from the final equation gives the
energy balance as

pe=pr —divq + pS-F (3.5)

Eliminating pr from 3.4 and 3.5 after carrying out the operation indicated
in div ¢/0 results in

”ZE_T—Wq.g 3.6)

From Coleman* we note that:

#>0whenkF=¢g=g=0
e<OwhenF=9g=g=0 (37

Thus we see that in a typical stress relaxation test with homothermal condi-
tions, the specific internal energy can decrease and the entropy can increase.
Introducing a Helmholtz free energy function y where

Y =¢—0n (3.8)

and taking the partial derivative of ¥ where § = Y, oty - o, (with ¢; as
i=1

any selected independent variable) and d.% = Oy/0¢p we then equate the
coefficients above to those obtained by writing ¥ in terms of 3.8 and 3.6.
The result is then with a constitutive equation of form 3.2

Oy =6 = o) F — ot + )0~ a8 = 3 doh- >0 (39)

Specifically in a form 3.2 we have

¥ =Wk F00gs z . Z ) (3.10)

with 7, S, q of the same form.
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Not only then is the usual result

S=—-0;n= —0y (3.11)
obtained, based on independence of the dependent variables, but in general
Optf =0forl <i<n (3.12)

which in our case removes any dependence on g or any ¢; in ¥. Similarly
Ooy =0 1<i<gn (3.13)

rergoying any dependence on ¢@; whatever @; may be including it being

So%ne authors®-® have interpreted the case where derivatives are used to
imply that the entropy inequality simply drops the dependence on ¢™ to
the level ¢~ 1), This is not only untrue for independent variables, but logical
deduction, i.e. recycling the equation with ¢~V dependence, would lead to
@*~ 2 dependence until 3.12 or 3.13 conditions prevailed. In general

WYy =0k=1,2,..., i=12 ..

It is this above fact that has led® to the often quoted statement that one-
sided rate materials cannot exhibit stress relaxation. The solution to this
paradox is twofold. First, where all the variables in 3.10 are independent
then relation 3.10 can be reduced to

v = y(F,0) (3.15)

a so-called caloric equation of state. Defining, as usual, the elastic, S, and
dissipative S stress components of S = S + S yields by equation 3.9

S =0pand S F>0 (3.16)

Implying, since S and F are jointly continuous, that ;S — 0 when F — 0, i.e.
no relaxation under constant strain. Again this is strictly correct and points
out the fact that any one-sided formulation in any number of independent
variables and their higher derivatives degenerates to nothing more than an
equivalence to a two-element non-linear Kelvin—Voigt solid which can
exhibit creep but no stress relaxation excepting a jump relaxation when
F — 0. Secondly, the situation may be resolved by simply removing the
independence from one or more of the variables entering into, say 3.2. This
may be done by specifying one of the derivatives of ¢, as dependent, i.e.

(‘pi = f(Ba A(l)a cees @yl ) (317)
Then a dissipation, o, inequality will arise from 3.9 leading to a term
6= —0,yf=20, .60 (3.18)

for homothermal fields, g = 0.

We now see that dropping the artifice of 3.16 and expressing the rate of
change of stress, S as

SF = Oryr F 4 Coily '(.Pi (3.19)
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and with F = 0 and 3.18 where ¢, = f, not necessarily integrable
SF= 0oy, <0 (3.20)

Thus, the introduction of a dependence in time of even one ¢, leads to 3.20
which states that the stress must decrease in a stress relaxation test. Needless
to say, the dependence of ¢ requires a proper statement of initial conditions.
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