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ABSTRACT
The author discusses the applicability of various theories for describing
processes in continuous matter and deals in some detail with the entropy-free
thermodynamics of irreversible processes, basing his discourse on the work of

J. Meixner in this field.

Today there are essentially three different phenomenological theories
available for describing processes in continuous matter:
(1) The classical Thermodynamics of Irreversible Processes (TIP)1.
(2) The Non-linear Field-Theories of Mechanics and their thermodynamic

extensions (NFT)2.
(3) The Entropy-free Thermodynamics of Processes (ETIP)3' .
These theories have in common the conservation laws of continuous matter
and the laws of thermostatics. They differ essentially in the arguments
on which the constitutive equations (CE) are based. Classical TIP starts from
a generalized Clausius—Duhem Inequality (CDI) for the well-known (specific)
thermostatic entropy s

p5+divJ8O (1)

The quantity is well defined by the second law of thermodynamics and is
a function = s5(u, p) for fluids and a function = s(u, F) for solid
systems. Here u means the (specific) internal energy, p... density, Ff1...
deformation gradient, substantial time derivative of and J...
current of s. In the case of thermodynamic systems without diffusion one has

q/T (2)

with q. . . heat flux and T. . . absolute temperature. The inequality 1 has
been proved valid in quite a few applications'. Nevertheless it must be
emphasized that in TIP its validity is postulated and cannot be concluded
from the second law (ref 1, p 424; ref 4, p 33 etc.).

To get CE in NFT one starts with a generalized CDI

PSN+diVJNO (3)
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for a hypothetical (specific) Non-equilibrium Entropy (NEE), SN. Here 5N
means the substantial time derivative and N the current of SN. Unfortunately
in NFT neither SN nor 'N is defined uniquely. Therefore today the physical
significance of these quantities is not clear. Beside this, in NFT nothing is said
about the physical meaning of the inequality 3, the validity of which is merely
postulated.

Now within the framework of a phenomenological theory the concept of
NEE SN is at least questionable. The reason is that SN cannot be defined
uniquely. This has been shown by J. Meixner3.

Therefore one may ask whether thermodynamics of processes can be
developed without postulating the inequality 1 and without using the concept
of NEE or the inequality 3. This is indeed possible. J. Meixner4 has developed
a theory of processes in continuous matter without using the inequalities 1
or 3 and without using the concept of NEE. This theory will therefore be
called ETIP. Instead of the generalized CDI 1 or 3 in ETIP one has the
Fundamental Inequality (F!) [ref. 4, p 88, (6)] which is mainly a consequence
of the integral form of the second part of the second law

S5(B) — S(A) (4)

Here A and B denote two equilibrium states where B is posterior to A and
5Q is the heat the system has been supplied with at a temperature T. This
inequality has been proved by R. Clausius5. In contrast to this, the differential
form of the second part of the second law

dSN 5Q/T (5)

is a postulate and cannot be concluded from expression 4 or any other
equivalent form of the second law.

Now we shall write down the F! for a fluid or solid system which consists
of one component and one phase only and which is not affected by any
body forces. Arbitrary time-dependent forces acting on the surface of the
system may be prescribed by boundary conditions.

The system can exchange heat and mechanical work through its surface
with its surroundings.

In the interior of the system heat conduction, internal friction and
a process which will be called 'internal energy exchange' may appear.
Following J. Meixner', for each element of such a system and each real
process which starts at t — cc in an equilibrium state, the Fl

f' t "i . 1 stik P1\ 1 1
J f——--) (6)- T8, T p T p T

holds. Here means the thermostatic temperature, T... thermodynamic
temperature, ,tjk•. thermostatic pressure tensor, jk•• thermodynamic
pressure tensor, v1... velocity, = 27jk = 0iVk + 0kVj (i, k = 1, 2, 3),
F1 = (/XI)xI(Xk, t). deformation gradient, x(Xk, t)... trajectory of a
mass element = (/t) + v(/ax3... substantial time derivative, Xk...
initial position of the mass element.

All quantities are functions of position x and time t. In all quantities
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appearing in expression 6 the dependence on position x1 may be thought to
be changed into a dependence on time by use of the trajectory xI(Xk, t) of the
element. In other words, expression 6 holds for a fixed material element along
its path. The following relations hold

ds(u1F) = —- du + - (F- 1)jk (PStkl/TSt) dFej (7)Pit
= {E1(F ')Ik + Fkl(F ')h} (8)

p(t) = p(— cc)(Det F(t) 1
(9)

The quantities 7, stik are defined by equation 7. The thermodynamic
temperature T and pressure tensor jk describe the temperature and the
stresses which are actually realized in the system at time t and position x1.
In general T will differ from T, in the same way that P2 will differ from P ik

The Fl holds for all times t0, arbitrary mass elements and all real processes
which start in an equilibrium state at t = — cc, i.e. all systems of continuous
functions

{u(t'), F(t'), q1(t'), p( — x), — cc < t' t} (10)

The integrand of the Fl is, apart from a factor p. the 'production cr of
thermostatic entropy', i.e.

p + (q/T) = cYSt (11)

(- — + — ij + q5(1/T) (12)

a need not be positive only but also may assume negative values! In view
of the generalized CDI 1, 3, the Fl 6 and the relation 11, the following
questions arise:
(1) Do materials exist for which one may deduce from 4 or 6 respectively

the validity of the CDI 1 for s? In other words: For what kinds of
materials may the thermostatic entropy also be interpreted as NEE?

(2) Assume that question 1 is answered in the negative for the material
under consideration. Is it possible to define at least a certain NEE in
such a manner that both the Fl 6 and the CDI 3 for SN hold?

Here we shall only consider question 1. In the following we give the answer
to this question for the system mentioned above (one component, one phase,
no body forces) and for some special classes of materials. Some results
concerning question 2 will be the subject of another publication.

Now the answer to question 1 depends mainly on the structure of the CE
of the material under consideration. Therefore we must make a few remarks
on these equations.

One usually assumes (ref. 2, p 56 etc.; ref. 4, p 91) that the present state of a
certain element of mass is uniquely determined by the history' of the
element Here we confine ourselves to so-called 'simple materials' which
are characterized by the fact that their state at time t is completely specified
by the histories of u, q, and F1k. All other quantities, especially the coefficients
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of u, q, 111k which appear in the Fl 6,

1 1 stik '7ik 1
17 T' T' 'T (3)

must be functionals of the history 10. These functionals must be single-valued,
continuous and invariant against translation of time. Therefore the CE
may be written as:

(a)

= ,{•/•} i, k 1,2, 3 (b) (14)

2,ik{/.} (c)

Here the bracket {/.} is given by 10. The equations 14b and 14c are genera-
lized laws of heat conduction and internal friction respectively. Equation
14a describes the so-called 'internal energy exchange'. Example: Relaxation
of temperature in a homogeneous mixture of ortho- and para-hydrogen.
The functionals S,(o = 0, 1, 2) must vanish in thermostatic equilibrium.
Therefore, it is presumed that for all t

i(t) = 0, q(t) = 0, P14t) = 0

the relation

lim 2{u(t'). . . p(— ); — ci <t' t} = 0, = 0, 1,2

holds. Moreover, the functions must obey the Fl 6 and the principle of
material frame indifference (ref 2, p 44). For literature, see ref. 4, pp 93, 43
respectively.

Two important classes of materials are those of differential type and of
integral type (ref. 2, p 93, 98; ref. 4, p 95). The following statements hold*:

(1) For simple thermodynamic materials of the differential type with
arbitrary complexity r 1, one can conclude under certain conditions from
the Fl 6 that the CDI 1 holds for s. To be more precise we formulate a
theorem:

C1: The material is simple, of the differential type and has arbitrary com-
plexity r 1. That is, the functionals are restrained to single-valued and
continuous (generally non-linear) functions.

= k—) = 0,1,2 (16)

with (—) = (. . . ü(t) 4'(t) P(t) . . .
p(—cc),k=0...r,l= Or—i)

C2 : The equilibrium condition 15. In view of 16 and 17 this condition reads

0,0. . . , 0 . . . 0,F1, 0... , p(— oc)) = 0

* C. . . condition, pre-requisite, T. . theorem, P.. . proof.
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C3: The differences between and T, ik and ik and the temperature
gradient aT, which will occur in the material during the process, exist for
all finite and infinite values of the higher time derivatives of u, q, F.3 namely

(k 1), k = 2. . . r. In other words: Let = ak, 4(k— 1) = bk,
F'j) Ctik be arbitrary constants, then

lim ü... ta. . . , q. . . xbIk.. . , F, F.. .
= ü, q1, Ft,, E) .. exists and is a single-valued and continuous

function of its arguments.
C4: The Fundamental Inequality 6 with 14 and 16, i.e.

('ta 1 1
{Pg + + —qI 1}dt 0

p p
for all histories 10 the functions of which are differentiable r times and vanish
or converge to a constant value for t' -÷ — cc faster than t' with n = 1, 2,
arbitrary.
T: = ptP + 11kZ?ik + 0

When r = 1 the condition C3 is obeyed trivially because the functions
1i (oc = 0, 1, 2) do not depend on the higher time derivatives ü. . . etc.
In this case the CE 14 with 16 are, disregarding the distinction between
T and T, the CE of TIP (ref. 1, p 425). Therefore one can say that, as a
consequence of the above theorem, in TIP the CDI 1 for sn does indeed hold.
Moreover, one can say that in fact the CDI 1 for holds for a much larger
class of materials than those used in TIP, namely for materials which are of
the differential type with arbitrary complexity r 1 and which obey C3.

(2) For simple thermodynamic materials of the integral type of order 1
and complexity 1 which obey a certain principle of fading memory the CDI 1
cannot hold. This is a consequence of the following theorem:

C1 : The material is simple, of the integral type*, of order 1 and complexity 1.
That is, the functionals are restricted to

,'} = A1(—) + dt' K'() c = 0, 1,2 (18)

with

(—) = [u(t), ü(t), q1(t), F1(t), F(t), p( — )]

() = [u(t'), t(t'), q(t'), F(t'), P1(t'), t — t', p( — cc)]

and { /.} given by 10.
Further, A' and c' are single-valued, finite and continuous functions

of their arguments. Moreover, ,41) is integrable in — cc < t' t for all
histories 10 the functions of which vanish or converge to a constant value for

—* — cc more rapidly than t' with n = 1, 2... arbitrary. The integral

* Our definition of materials of the integral type of order 1 is somewhat more general than
the definition given by Truesdell and Noll in ref 2. (We don't presume the integral kernels ,4
to be resolvable in factors which depend on different arguments.)
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in equation 18 must converge for t' —÷ — cc pniformly with respect to t
for all t t0.

C2: The equilibrium condition 15. We confine attention here to materials
18 for which the following conditions hold:

A(u, 0,0, 0, p(— cc)) = 0 (a)

K1(U' 0, 0, 0, t — t', p(— cc)) = 0 (b) (20)

lim (t — t') 41(u, ii, q, F1, P, t — t', p(— cc)) = 0 (c)

This limit may be approached uniformly with respect to t' for all t' t0.
The assumption 20c means that the 'memory' of the material decreases

for t' —+ — cc faster than t' . It can easily be seen that 20 is sufficient, though
not necessary, for 15 to hold.

C3: The CDI 1 with 11, 12, 14 and 18, i.e.

{A +j' dt'141)} + 1ik {A + J dt'1ck }

± q + jdt'Kni }
0

holds for all t and all histories 10, the functions of which are at least
differentiable.
T: ,41)(1) = 0.
P: See ref. 7.
Therefore when the memory functions ic in 18 are not identically zero,
one can conclude that the CDI 1 for s cannot be valid for all times t.

(3) For simple thermodynamic materials of the integral type of order 1
and complxity r = 2, i.e. the functions i may depend on (u, a, u, q,, F.3, F13, F1), the CDI 1 may or may not hold7.

The question whether CDI 1 holds for simple materials of integral type
of higher order and higher complexity is postponed to future investigations.
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