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ABSTRACT

The historical fact of the ability of a system to avoid showing a phase transition

when taken along a suitable thermodynamic path is examined and a way

offered of looking at the ‘critical point’ problem in keeping with various

prevailing viewpoints. The semi-phenomenological view is given, followed by

exact results, perturbation expansions, a description of equilibrium phenomena

and illustrations which involve the Riemann surface but omit the property of
convexity.

1. INTRODUCTION

Despite the recent heroic attempts to construct microscopic models whose
exact solutions show phase transitions, there remains a peculiar gap between
the equations of state which arise from these models and the experimentally
defined relationships among the thermodynamic parameters. This gap is all
the more striking due to the fact that good quantitative agreement with
experiment can be obtained for a wide range of parameters but there is a
decided lack of qualitative agreement near just those values of the para-
meters which appear to be most interesting. These are the values near a
critical point of the system.

That the neighbourhood of a critical point is indeed the most interesting
place to look at a phase transition is not only a latter day phenomenon but
also an historical fact. In looking over the literature pertaining to changes
of state, one is immediately struck by the concern of early workers in the
field with the fact that, above certain critical values of the parameters, no
change of state of the system can be observed. Thus, as early as 1822, one
Baron de la Tour! observed that various gases including carbon dioxide and
water vapour exist in only one phase when the temperature is above the
value now commonly known as the critical temperature. Later experiments
confirmed these results more quantitatively? but de la Tour’s work had
already uncovered the basic phenomenon described by van der Waals® in
his now classic equation of state. This ‘continuity of liquid and vapour
states’ (as van der Walls referred to it) or the ability of a system to avoid
showing a phase transition when taken along a suitable thermodynamic path
represents the most outstanding feature of the critical region and may, in
fact, be thought of as the essence of a critical point. We offer here a way of

* As the author was unable to be present at the Conferengthisipapg' was read by title only.
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looking at the problem which ties together various prevailing viewpoints.
Much gf this material is excerpted from an article of the same title by the
author™.

II. THE SEMI-PHENOMENOLOGICAL VIEW

The idea of a semi-phenomenological explanation for the continuity of
states originated, as already mentioned, with van der Waals, was continued
by Weiss® for an explanation of the Curie point of ferromagnetism, and
reached its culmination in the generalization of the van der Waals equation
of state proposed by Widom® a few years ago. The prefix ‘semi’ is justified
because one can concoct microscopic models which yield the van der Waals
and Weiss equations of state in some approximation. These models have
been discussed extensively in the literature’ and will not be taken up here.
We shall only note that the physical basis of these equations of state comes
about from the competition between energy and entropy in the Helmholtz
free energy, F = E — T, the one arising from the weak, long range attrac-
tion between the particles and the other from the strong, short range repulsion
(generally taken as a hard core). Widom’s homogeneous equations of state
do not have such a simple explanation® but if we accept the idea of homo-
geneity as at least an approximation to some general physical principle, then
these equations too may be described as semi-phenomenological.

In order to put this viewpoint in its proper perspective, we refer to an
analysis of free energies (i.e. thermodynamic potentials) which show the
phenomenon of the critical point as given by the author®. This treatment
relies on the sole assumption of analytical continuation of the thermo-
dynamic potential in both its variables. The main results are:

(1) In the neighbourhood of the Curie (critical) point, the Weiss theory
free energy F(H, T) can be represented by an algebraic function of third
degree. The chemical potential corresponding to the van der Waals equation
of state in the neighbourhood of the critical point has the same form when
regarded as a function of reduced pressure and temperature after a trans-
formation which makes the reduced vapour pressure equal to zero for all
temperatures. (We use the word ‘reduced’ to denote the difference between a
variable and its critical value.)

(2) Magnetic free energies which are algebraic functions homogeneous in
the applied field and reduced temperature form a special case of the analogue
of Widom’s homogeneous functions.

The assumption that a thermodynamic potential is an algebraic function
of its natural variables is clearly an approximation since (a) the critical
exponents must be rational and (b) no logarithmic behaviour can be obtained.
However, we shall see that algebraic functions act as a framework upon
which to hang the more general description which will include logarithmic
behaviour as well as other singularities.

III. EXACT RESULTS
It seems increasingly clear that a simple closed analytical expression for
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the full ferromagnetic problem with applied field or the related problem of
a fluid is by its very nature impossible to obtain. The reason boils down to a
question of representation of a function. In ref 9 it is seen that even the
simplest algebraic functions which show the characteristic behaviour of a
critical point cannot be represented in closed form but are defined as implicit
functions by a polynomial equation. The representation is then realized by
expanding the individual terms in the polynomial about any point of interest,
thus obtaining a representation of the function about that point. This
representation is in the form of an ordinary Taylor expansion if the point is
non-singular and a Taylor expansion in the variable { = z!/* if the point is a
singular one. Here z is the original variable, n is the degree of the defining
polynomial (more accurately, the order of the singular point) and the
expansion may start with a negative but finite power of {. In the neighbour-
hood of a critical point, we are dealing with a function of two variables and
the points of interest lie on either the coexistence curve or the critical iso-
therm. The critical point itself is excluded. For the magnetic case, the ex-
pansions are of the form

FH,T) = Z” (T — T)H" (1)
for the first case and
F(H,T) = 3, b(H)(T - Ty @

for the second. The coefficients @ and b are themselves expandable in the
form required for a singular (branch) point in one variable, so that we have

afz)= S 4,z 3)

i=r,

and

bi2) = 5, Bz @

where r and s are positive or negative integers and ¢ and u are the orders of
the branch points. The numbers r,/t, and s,/u, (referred to as o, and S, in
ref. 9) are the leading exponents and are commonly known as the critical
exponents for the nth derivative of the free energy with respect to H and T
respectively. For the two-dimensional Ising model, only the asymptotic
forms of the leading terms of a3 (T — T) and a; (T — T,) have been found
analytically. (The plus and minus signs refer to whether T is greater than or
less than T, that is, whether we are above or below the critical point.)
Onsager’s well known solution'® gives af (T — T) and ag (T — T)) both
asymptotlcally equal to (T — T)* In (| T — T,)) while the published solution
of Yang'' for the spontaneous magnetization gives the asymptotic form of
ai(T — T) as (T, — T)* None of the other as and bs are known even
asymptoticallyt. Nevertheless, the mean field theories together with some
recent work on perturbation expansions to be discussed in the next section
contain what we believe to be the essential features of phase transitions.

t Various numerical calculations for the a,s and b,s up to n = 8 have been made. See refs.
12 and 13.
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IV. PERTURBATION EXPANSIONS

The expansion about the ideal gas pressure with the fugacity as the variable
has been returned to recently by a number of authors, among them Andreev!4,
Langer'’ and Fisher!S. It is shown that if one considers an expansion in the
fugacity of real droplets (as opposed to mathematical clusters), one is led to
a series which represents a function which has an essential singularity on the
real axis for all temperatures. Thus, the conjecture!” that there be a singu-
larity at the condensation point (as opposed to the critical point) has been
verified in a physically appealing approximation. Furthermore, Fisher'® has
also analysed a one-dimensional model which shows these properties.

We consider the Riemann surface of an algebraic function of the type
proposed in ref. 9. On a neighbourhood of this Riemann surface not con-
taining a branch point, one may define a single valued function'®. We now
imagine a function defined on the Riemann surface which has an essential
singularity at the crunode (see ref. 9) and is linear in a neighbourhood of the
crunode. If the essential singularity be chosen so that its value and the values
of all its derivatives approaching from the real axis are zero (the most
common example is e~ 1/**) then we will have a function of the type which
has been found for the droplet model®®. A specific example is the following,
Let the algebraic function of two variables be denoted by f(z, T — T,) where
z is the variable appropriate to the physical system (reduced chemical
potential for a fluid, magnetic field for a ferromagnet). Let g(z) be a function
which has an essential singularity of the type previously mentioned. The
function f[g(z) 4 z, T — T.] then has all the properties ascribed by Fisher to
the grand potential of his one-dimensional model. Furthermore, the line of
essential singularities is continued above the transition temperature as in
that model.

V. DESCRIPTION OF EQUILIBRIUM PHENOMENA

In the preceding sections, we have attempted to show the relationship
between the currently accepted views of critical phenomena and the picture
presented by the author in ref 9. In that paper, explicit use was made of
algebraic functions as a representation of that thermodynamic potential
whose natural variables are intensive. But we have already seen in Section I1
that algebraic functions cannot provide all the observed behaviour. We now
pose the following question. What class of functions can exhibit all the
known behaviour and yet is elementary in the sense that it has already been
studied?

Before discussing this problem we might remark that there is a natural
analogue of this situation in the description of decay of physical states. That
problem might be thought of in the same light as the present one. That is,
we have available an elementary function (the decreasing exponential) whose
properties aré obviously well known and which describes the qualitative
physical behaviour. Nevertheless, as in the present case, the connection
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between the underlying microscopic dynamics and the observed macroscopic
behaviour has never been completely establishedf.

What then are the elementary functions describing critical phenomena?
We have already seen that algebraic functions alone are capable of describing
many aspects of the two phase region. The main feature of algebraic functions
of two variables which is most useful for the present situation is the breaking
up of the Riemann surface into disjoint pieces when one of the variables has
the particular value which corresponds physically to the critical value of the
thermodynamic variable. This feature may be kept by working with functions
defined on the Riemann surface of the appropriate algebraic function. Since
the only missing aspect of the equilibrium situation is the possible logarithmic
behaviour of the coefficients a,(T — T,) defined in equation 1, we need only
assume that the functions defined on the Riemann surface are Abelian
integrals or products of analytical functions and Abelian integrals. Such
functions are elementary in the sense defined above. Since an Abelian
integral is defined as the integral of a rational function of an algebraic
function and its variable on the Riemann surface of that algebraic function,
then its singularities include poles and logarithmic singularities, but no
essential singularities*.

With these functions, we may now have ao(T — T)) ~ (T — T)In(T — T))
as in the two-dimensional Ising model Also, since the singularities of an
Abelian integral (in one variable) are isolated, we preserve the property of
analytical continuation in two variables from one side of the two phase
region to the other. The same procedure may be used to define a function
with a non-algebraic branch point on the Riemann surface of an algebraic
function. This leads to irrational critical exponents. Finally, as in Section 1V,
we can add an essential singularity at the crunode by forming the function
Flg(z) + z, T — T;] where F(x,y) is an Abelian integral defined on the
Riemann surface of an algebraic function of x and y and g(z) is a function
with an essential singularity of the type exp(— 1/z?) at the origin.

VI. ILLUSTRATIONS

The following free energies serve to illustrate the method of description of
the preceding section. Because of space limitations, we shall not analyse the
Riemann surfaces but merely write down the defining equations for the
algebraic functions and indicate briefly how the analysis should be done.

The first example is the familiar molecular field theory with the reduced
thermodynamic potential f given as a function of the applied field H and
reduced temperature T — T, = t. Since f is known to be homogeneous and
the exponent ¢ is equal to three, we are dealing with a third order algebraic
function. Its defining equation is

t An example of this is the decay of an arbitrary state to its thermodynamic equilibrium
value. While various approximation schemes enable one to calculate the relaxation time (i.e.
the normalization of the exponent governing the time dependence), its actual existence has
never been rigorously demonstrated.

3 Since we will not make any computational use of Abelian integrals here, we merely catalogue
some of their properties. The interested reader is referred to G. A. Bliss, ref. 18 for the precise
definition of Abelian integrals as well as theorems relating to them,
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P(fH ) =f+3 1+ (Gt* + ZH)f+5H + 5 HE =0 (5
Computation of the discriminant of P (the remainder when P is divided by
OP/of) shows that the branch points are located at H = 4%(—¢)* in agree-
ment with the positions of the end points of the loops in the molecular field
theory. The critical exponents are obtained by inserting the expansions of

equations 1 and 2 into the defining equation 5 and equating coefficients of
equal powers of H or t. We find easily:

ag = —3(= X

ap = £330t Y7

G = —H-pt 4T

by = —@pHt = (6)
by = @*H?

b = —}

where the plus and minus signs on the as refer to the sign of ¢, that is whether
we are above or below the critical point. For H = 0, factorization of P into
f(f + 3t*) indicates that the Riemann surface of f becomes disjoint on the
coexistence curve and that there is a crunode at H = 0.

The second example is the somewhat less physical three-dimensional ideal
Bose gas. Following Gunton and Buckingham, we look at the free energy
for fixed density and variable density of particles in the zero momentum
state. Within a phase factor, the order parameter or Bose moment  is the
square root of the density of zero momentum particles and the conjugate
variable { is the Bose field. The reduced thermodynamic potential f as a
function of { and t is homogeneous and the exponent 4 is equal to five so we
are now dealing with a fifth order algebraic function. Its defining equation is

P(f;{0) =f° =4 600* + 1% = 3201 + 13 20 + @°C°
-1t =0 (7
The root of the discriminant locate the branch points at { = +(16/5%) (—1)*

and { = 0. This sticking of two of the branch points at { = 0 shows that the
expansion of equation 1 must be changed to

(R WNCDI ®)
for t < 0. The as and bs are found to be:
ag =0 Clg = ?1;!3
a; =0 aif =0
a; = (=t} aj = -3t
— 1 -3 5+% (9)
a; = x3(—1) by = —%¢
a; = 41732 by =%
b, =15(?
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For { = 0, factorization of P into f*(f — &t®) again shows that there is a
crunode at { = 0. However, the fact that a; exists means that the analogue
of the susceptibility is infinite at { = O for all t < 0.

The branch points in the neighbourhood of the origin illustrate another
aspect of the critical region which has become popular recently, mainly with
the experimentalists. Since the two physical branches of f which form the
crunode for t < 0 must be connected to the other non-physical branches,
there must be a branch on each of them which approaches the origin of the
H-plane as t — 0. The trajectory of these branch points in the t — H manifold
is the spinodal line originally referred to by van der Waals!®. Since the
spinodal line lies on a non-physical (perhaps, metastable) sheet, it is un-
reachable by an equilibrium experiment. Nevertheless, by measuring a
thermodynamic quantity along, say, an isotherm close to the critical iso-
therm, one may approach the branch point on the spinodal line and thus
measure the associated exponent. The most obvious thing to measure along
an isotherm is the magnetization as a function of H2% 2!, In the molecular
field theory, this behaves as

M ~ [H — HO} (10)

where H(t) is the trajectory of branch points. One may also approach the
spinodal line along other curves; typically, for a liquid, C;, may be measured
along a non-critical isochore.

VII. CONCLUSION

We have attempted to take some of the mystery out of the mathematical
description of thermodynamic potentials near a critical point by showing
that there are elementary functions which possess all the properties normally
ascribed to these potentials in the vicinity of such a point. For the thermo-
dynamic potential whose natural variables are naturally intensive, these
properties may be summarized as follows. The thermodynamic potential is
denoted by F and its reduced natural variables by z and .

(1) F is a single valued function of z and ¢ with a singularity in z and t
separately at z = t = 0 (critical point).

(2) (0F/0z), has a discontinuity along the line z = 0 for t < 0 (coexistence
curve).

(3) F has no singularity in t along the line t = 0 and z # 0 (critical isotherm)
nor anywhere else in a neighbourhood (0 < z < zy, 0 < t < t,) of the
critical point.

The elementary analytical function which has the above properties is a
single valued analytic function defined on the Riemann surface of an algebraic
function. The algebraic function f(z, t) has the following characteristics.

(1) fhas a branch point in z and ¢ separately at z = t = 0.

(2) The two smallest real branches of f form a crunode (crossing point)
in the z-plane along the line z = 0 for t < 0.

(3) The sheets of f contain branch points whose trajectories in the z — t
manifold pass through the origin (z = ¢t = 0). That part of the Riemann
surface of the true thermodynamic potential which is relevant in the
neighbourhood of the critical point is given by the Riemann surface of f.
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None of the other sheets of the true thermodynamic potential affect the
critical exponents.

This last characteristic of f is illustrated by the molecular field theory.
The equation of state tanh[(H + M)/kT] = M has an infinite number of
solutions (sheets of M as a function of H) but only the three sheets which
contain the two branch points (cusps) which come together at the origin
determine the critical behaviour. Thus, the relevant part of the Riemann
surface for the molecular field is given by the Riemann surface of the third
order algebraic function of Section VI This Riemann surface is seen to be
connected in the H-plane for ¢ # 0 (the defining polynomial is irreducible
in H for t # 0) but becomes disjoint when ¢ = 0 (the polynomial factorizes
when ¢t = 0).

The property of convexity of the thermodynamic potential has been left
out of the above list since it plays no direct role in determining the qualitative
properties of the Riemann surface. It is, rather, a feature which must be taken
into account when constructing specific examples of thermodynamic
potentials and will, of course, play a role in determining the relationships
among the critical exponents, the so-called scaling laws.
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