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ABSTRACT
The problem of chemical or phase equilibrium under non-hydrostatic stresses
is discussed. It is shown how to formulate a formal thermodynamic theory, the
essential step being the correct definition of the mechanical coordinates so that
they describe not only the change of shape but the work done in such processes
as deformation, chemical action, crystallization or solution at a surface, or a
phase change. A useful Gibbs function is defined to give the conditions of
equilibrium for the above processes. The theory agrees with experiments on the

c—3 quartz transition and on the de-twinning of quartz.

1. INTRODUCTION
The problem of chemical or phase equilibrium under non-hydrostatic

stresses is of considerable interest in the earth sciences as well as in solid state
physics generally, and it has been the source of some considerable contro-
versy 1—7 The discussion centres on the possibility of the treatment of such
equilibrium by formal thermodynamic procedures. For instance Kamb2
stated 'that it is not possible usefully to associate a chemical potential or
Gibbs free energy with a nonhydrostatically stressed solid'. Verhoogen6,
however, defined a Gibbs free energy by analogy with, and by extension of,
the hydrostatic case and thus not rigorously deduced.

It will be shown how it is possible to formulate a formal thermodynamic
theory and that the essential step is the correct definition of mechanical
coordinates which must satisfy the requirement that they determine the
work done on a system in a change which may be due to deformation,
chemical action, crystallization or solution, or a phase change. Using the
correct coordinates, a useful Gibbs function may be defined and used to
give easily the conditions of equilibrium for such systems as a stressed solid
in contact with a solution of the solid, quartz at the transition surface for
the c—3 transition and similar phase changes, coexsisting crystal twins,
stressed solids into which homogeneous diffusion of a chemical component
may occur. The application of this theory justifies the empirical theory of
Thomas and Wooster8 inferred from experimental work on de-twinning
of quartz, and agrees with experimental work on the ci—13 quartz transition9' 10

2. DEVELOPMENT OF THE THEORY

When a phase changes its shape and bulk, this may be due to the material
in it being deformed, or its structure being altered as in a phase change, or
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to the material being added to either at the external surfaces by crystallization
from solution, or by homogeneous diffusion.

Although it is not necessary to the argument at this stage it is desirable to
distinguish these processes as to whether they are coherent or not. Coherent
here is used in the sense that a process is coherent if the atoms or ions of the
basic solid material which were neighbours remain neighbours during the
change. Pure deformations, homogeneous diffusion, phase changes such as
c— quartz, twinning of the Dauphiné type in quartz are all coherent,
whereas crystallization from solution is incoherent.

In this paper the treatment will be confined to the case of infinitesimal
deformations but it may easily be extended to that of finite deformations6.

In the infinitesimal case, the virtual work done on the phase in a virtual
ch,nge is given by

W = IA0 {öun, + una} dA0
where the stress tensor, is always taken as uniform throughout the
phase. u is the vector displacement of the surface element dA0 occurring in
the change, n is the unit outward drawn normal at dA0, and A0 is the surface
area of the reference state of the phase. Here and throughout the paper the
summation convention is used for Greek suffices.

We thus define
= + $0{i + unj dA0

and thus

since the integration in 1 and 2 is over a fixed surface A0. The first term in
2 is added as a constant of integration so that

v= V
and this leads to the correct formulae in the hydrostatic case.

It is important to realize that u must be determined at every stage by the
criterion that 1 and hence 3 must be satisfied. In the case of crystallization
or solution at an external surface in contact with a solution, the pressure of
the fluid is normal and if a mass N is crystallized on a plane face it is easy
to see that = —ÔNvP

= SNvnnflT
where n is the unit normal to the face and v is the specific volume of the solid,
and hence

= Nv;n
In an example where a solid phase in the shape of a cube is in equilibrium

with two different solutions under different pressures, one of which is in
contact with a face normal to the y axis and the other in contact with a face
normal to the x axis, a virtual change may be imagined where the shape of
the cube becomes that of a rectangular prism by the uniform solution of
mass 5Nof the solid from the face whose outward normal is in the y direction,
and the uniform crystallization of the same mass on the face whose outward
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normal is in the x direction. In this case it is easy to see that although the
total mass is constant, and the temperature and stress remain the same, the
V change.

That is
SVyy = — V öVxx = V oN (7)

all other coordinates being unchanged.
Thus in general

V(T, 7, AN1, AN2...) )J'(T, T, N1, N2...) ()
although for a definite process such as described by equation 6 T' has an
extensive property. This property leads to no difficulty in practice.

For a pure infinitesimal deformation, it is easy to see that
= V0Oe (9)

where ep is the infinitesimal strain tensor.
For a coherent phase change, the structure alters in a definite fashion,

for instance in the cL—13 quartz transition both forms have a unit cell which
is a right-angled prism with a rhombus base of angles 600 and 120°, and
when the transition occurs the prism axes retain the same direction, however
the a and c lattice constants change in length. If we assume that these changes
are infinitesimal in this case, it is easy to see that if mass 5N of ct-quartz
changes to 3-quartz at constant temperature and stress, then the change of
dimensions and the work done are given by

= ONv(Lic/c)
= 0 = ONv(Aa/a) (10)

all other mechanical coordinates remaining constant If these changes
cannot be described by the infinitesimal deformation theory, the treatment
is easily modified6.

For homogeneous diffusion of a chemical component d into a solid at
constant temperature and stress, the change of shape and bulk will be given by

= (aV/3Nd)T,T0Nd (11)

As a final example, Dauphiné twinning of quartz may be considered.
Here a twin may be produced by small rotations of the Si04 tetrahedra to
give a structure which may be obtained by rotating the original form through
180° about the c axis8. Thus in a virtual change from one twin to another all

= 0 (12)

since the shape of the unit cell as described above is invariant to the 180°
rotation about the c axis.

Equations 6, 9, 10, 11 and 12 not only describe the change of shape and
bulk of the phase, but also the work done in a virtual change at constant
T and stress. A more detailed justification of this is given in ref. 6. In all these
equations

Lt (0V/0N) T21g = Vp (13)oN -0
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where oN is an increment of mass describing the change, and v13 depends
on the actual process; in particular in 6 it depends on the direction in the
stress field of the surface element at which crystallization or solution is
being considered. It is easily seen that when this process is adequately
defined, v is a function of the intensive variables T, 7 and the chemical
concentrations.

Before concluding this section, the definition of J' may easily be extended
so that 2 describes the coordinates of a multiphase system, and it can be an
additive quantity in the sense that for the system

vo,p = v
where the summation is over the phases. This is so if no slip is allowed between
solid phases. For a fluid/solid interface since any displacements u are allowed
which describe the change of shape of the external surfaces bounding the
fluid, we may choose u as continuous at the interface, and thus 14 is satisfied.

3. EQUILIBRIUM CONDITIONS VIA THE GIBBS FUNCTION
For a multiphase closed system

d U = (T dS + 7d J/(i))

if T is the same for all phases. Hence if we define a Gibbs function

G = U — TS — TV
where U and S are the internal energy and entropy of the whole system, then.

dG= —SdT—VdT
=0

for

dT = dT Oalli.

The equilibrium conditions may easily be obtained by the usual arguments.
First for the case of crystallization or solution at a plane surface, consider
a virtual change where T, 7 for the solid, and P for the solution are all
held constant Then

8G=ON{u—uL—T(s—s)+P(v—vj}
=0

on using 6 and the fact that
— Tflrzflp = P

U, s, v are the specific quantities for the solid, and UL, SL, VL are the partial
quantities for the solution. Hence for equilibrium

IL = u — Ts + Pv

the well-known Gibbs result11.
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For the —i quartz transition the equilibrium, condition for the coexistence
of the two forms at the transition surface is given by

Au — T As — (77 + 7) Av — Av = 0 (21)

where

Av = v Ac/c
Av = Av v Aa/a (22)

From 21 and 22 it is easy to prove that

TC/PX = + v(Aa/a)/As
= + v(Ac/c)/As (23)

where e.g. P = — T. From x-ray studies'°

Aa/a = (22 ± 0.2) Ac/c (24)

and both quantities in 23 are positive. Since As is positive the lefthand
expressions in 23 should be and are observed to be positive. Moreover,
Coe and Paterson9 showed experimentally that

(T/P) :(T/iP) 21 (25)

in excellent agreement with 23 and 24.
Finally Thomas and Wooster8 studied experimentally the de-twinning

(Dauphiné) effect of non-hydrostatic stresses on quartz. Since for the twins
12 holds, the condition for coexistence of twins is

Af=0 (26)

where f is the specific Helmholtz free energy, and this is consistent with and
justifies the empirical principle that de-twinning occurs best when maximal
energy is stored.

Thus, in general, equilibrium conditions for chemical and phase changes
may be determined by the Gibbs function, the quantities of the form v of
13, being thermodynamic 'unknowables' just as are the specific and partial
volumes in hydrostatics, and must for a particular process be determined
experimentally or from a theoretical model.
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