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ABSTRACT

In recent years the author has advanced a conceptual structure based on the
generalization of Gibbsian thermodynamics and statistical mechanics. The
purpose of this paper is to bring this theory up-to-date by harmonizing it

with the recent developments in the theory of critical phenomena.

1. INTRODUCTION
At the turn of the century thermodynamics and statistical mechanics had

their well defined logical structure. Thermodynamics was supposed to be
macroscopic and non-statistical; its microscopic foundations was expected to
be given by means of 'reduction' to statistical mechanics.

The rich developments of this century wrought havoc with these neat
categories, and present research pays, at best, lip-service to the traditional
logical structure.

One would like to hope that science can create order in the chaos of
experience, but unfortunately, successful scientific activity tends to create a
chaos of its own. A logical structure, to be of real use must be flexible enough
to cope with this complex situation. If such a structure can be developed at
all, this is likely to happen in successive approximations, in terms of manage-
able steps.

It seems to me that a modernized form of Gibbsian thermodynamics can
provide the point of departure for such a programme. A few years ago I
published a volume entitled Generalized Thermodynamics' to report on
progress achieved along these linest.

I am grateful for the opportunity to summarize my thoughts at this
meeting, particularly because significant developments occurred since the
completion of my report which render its updating desirable.

I am alluding to the remarkable expansion in the exploration of the
phenomena in the neighbourhood of the critical point24. The critical point
was discovered a little over a hundred years ago by Andrews, and was
presumably so named because of its critical role with respect to the possi-
bility of condensing a gas which appears 'permanent' at higher temperatures.
Such points are 'critical', however, for a deeper reason as well. In their

i I shall use the term GTD to designate generically any of the theories within this overall
structure.

261



L. TISZA

critical states substances reach the limits of their thermodynamic stability,
and many of their measured properties exhibit a singular behaviour, the
quantitative description of which poses extreme demands on experimentalist
and theorist alike. The intensive activity of the last few years came about
thanks to breakthroughs in experimental and theoretical techniques. Within
theory, these involve the treatment of singular functions by means of the
so-called critical point exponents2' .

Since critical points play an important role in GTD, the emergence of
these new techniques enables me to sharpen my argument and eliminate
unsatisfactory approximations formerly used out of expediency.

I have to confine myself to a somewhat impressionistic sketch of a number
of ideas without any pretence of proving specific statements. However, I
made an effort to line up the ideas so as to bring out their interdependence,
and would like to hope that the parsimony in detail will further this end.

One of the problems arising in this connection is taking a new look at the
relation of statistical mechanics to thermodynamics. My thesis is that we are
dealing with two complementary aspects of the structure of matter which
have to be used jointly in a carefully dovetailing pattern. At the outset
statistical mechanics starts with structureless permanent point particles and
thermodynamics with cells localized in space time. Both pictures are capable
of refinement and their ultimate relation should be inferred from the careful
analysis of experience, rather than from some preconceived opinion about
what is more 'fundamental'.

The structure of GTD has a hierarchic character built up in a step-by-step
procedure. Section 2 is devoted to the outline of a theory denoted by MTE,
an abbreviation suggested by 'macroscopic thermodynamics of equilibrium'.
Actually, MTE denotes a precisely defined deductive system developed in
ref. 1, whereas, following current practice, the term thermodynamics is used
in a somewhat vague generic sense. The situation is similar for STE (statistical
thermodynamics of equilibrium) discussed in Section 3, along with some
quantum mechanical considerations. Up to this point the rigour of the
developments compares favourably with that expected in classical thermo-
dynamics. The pace is changed somewhat in Section 4 in which approximate
methods are admitted in order to handle some detailed properties of critical
points which are beyond the reach of the rigorous methods.

The discussion is limited to time independent phenomena Although GTD
can account for a variety to time dependent processes, the situation has not
matured to the point of admitting a concise presentation.

In view of the fact that I am attempting to survey a vast range of subjects,
I beg to be excused for not supplying a thorough bibliography. The material
of sections 2 and 3 is developed in detail in ref. 1. My minor excursion into
the recent theory of critical point exponents is adequately documented in
refs 2-4

2. MACROSCOPIC THERMODYNAMICS OF
EQUILIBRIUM (MTE)

We start with the fundamental equation

U = U(X1,X2,. ..Xr+i) (1)
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expressitig the energy in terms of the extensive variables which for the time
being we choose to be the entropy S, the mole numbers of the c independent
components and the volume V. To be more precise, we assume that we are
dealing with what Gibbs called the primitive fundamental equation corres-
ponding to a single homogeneous phase.

We see that

r=c+1 (2)

We single out the volume V Xr +1 as a 'scale factor' and define the
densities:

Xk = Xk/V, u = U/v (3)

The intensities conjugate to the Xk are defined:

Pk fu/3XK (4)

Although superficially it does not seem to offer anything new if we solve
equation 1 for the entropy and write the fundamental equation in the
entropy scheme

S = S(X1, X2,. . .Xr+i) (5)

with the appropriate definition of intensities:

S/f3XK (6)

the parallel use of the two schemes is important because they serve to
describe reversible and irreversible processes respectively. While the energy
scheme is more convenient in the theory of phase equilibrium, the entropy
scheme is indispensable for a smooth transition to STE.

The choice of densities and intensit's for the description of thermo-
dynamic systems seems simple enouga rom the point of view of an ele-
mentary theory. It is a common expe. ience that thermodynamic systems
can be 'scaled'. Although this property is, strictly speaking, inconsistent with
the discrete structure of matter it is nevertheless assumed in the standard
thermodynamic formalism. I like to express this by saying that one assumes
the validity of the principle of scale invariance. This principle along with the
conservation laws and the extremal principles, form the backbone of the
formalism of MTE. The traditional tests of thermodynamics pay little if any
attention to this principle, maybe because of reluctance to consider principles
of limited validity. Yet, in spite of its fundamental importance, scale invariance
is limited for more than one reason. Such limitations arise because of surface
effects, and as a consequence of long range forces; a serious breakdown sets
in at atomic scales. Many interesting problems arise from the requirement
of handling situations in which one or the other of these restrictions becomes
effective. We shall consider some of these questions below.

Scale invariance, or the physical homogeneity of a phase, finds expression
in the mathematical homogeneity of the fundamental equation. This leads to

r+ I
U= XkPk (7)
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and

+1 u —
XkPk.

Assuming that equation 2 can be solved for Xk we obtain

1'r1 (i)(P1,P2,.. .Pr)
Note that

Xk = —

We examine the response of the system around equilibrium in terms of
the relations:

UiöX

where

Ujk = 2u/xxk =

and

=

where

(Djk = aX/oPk

The matrices 1 II and the reciprocal 1ik are called the stiffness and the
compliance matrix respectively.

A thermodynamic system is in a state of normal stability if the stiffness
matrix is positive definite. The matrix can be brought to diagonal form with
the diagonal elements:

k=1,2,...r
Dk_l \aXkJ P1 P2 P1c I

Here the Dks are the principal minors of the stiffness matrix. Normal stability
requires that all the tk be positive.

We note that the use of densities and intensities for the specification of
the system are entirely equivalent, provided

D (Pi,P2,•••Pr) O
(x1, X2, . . . Xr) too

and equations 11 and 13 respectively are soluble. The case Dr = 0 is pre-
cluded in states of normal stability, but this does indeed occur at critical
points, and Dr = is realized near absolute zero.

In order to explain the meaning of this 'breakdown' of the theory we
resort to the artifice of associating intensities with infinite reservoirs, and
describe systems in terms of their densities. Utider these conditions the
breakdown of conditions 16 makes excellent sense. The case Dr = 0 is
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understood by recognizing that at critical points the densities of the system
are subject to abnormally large fluctuations.

The nature of the anomaly near absolute zero is also easily understood.
At sufficiently low temperatures the entropy of a system becomes constant,
and below such a characteristic temperature the extensive parameters are no
longer uniquely associated with the temperature of the environment. This
is the basis for the notorious difficulties of low temperature thermometry.

In order to account for the more general situations in which densities and
intensities do not uniquely determine each other, we have the plausible
option of assuming this relation to be statistical. This idea is followed up in
the next section.

Meanwhile we conclude this section by pointing out that the Gibbs
phase rule follows at once from equation 9. Consider, indeed, a hetero-
geneous system off phases in equilibrium. The intensities have to satisfy an
equation of the type 9 for each phase. The space of intensities has the
dimension

=:r+1—f=c+2_fO (17)

where ó is called also the number of thermodynamic degrees of freedom.
It can be shown (see ref. 1, p 155) that critical states cannot arise unless two

distinct phases become identical at the point in question It follows from here
that a one-component system can have only an isolated critical point. Thus
the classical theory cannot account for lambda-points which form a line in
the P/T diagram. The necessary extensions of the theory will be discussed
in the next section.

3. STATISTICAL AND QUANTUM MECHANICAL
CONSIDERATIONS

The considerations of the last section suggest the development of a
statistical theory in which the extensive variables of a system are considered
as random variables. Randomness enters the picture because of the coupling
between system and reservoir involving the exchange of the quantities X.
The random variables are assumed to be statistically independent from each
other in the following sense: the values of the same quantity measured at
discrete instances of time are independent from each other, and so are
values associated with different systems coupled to the same reservoir. These
requirements are the statistical expressions of the state of equilibrium. For a
detailed discussion of this approach I refer to Tisza and Quay5 who have
shown that the elaboration of this picture yields under very general and at
the same time realistic assumptions the grand canonical distribution function
(d.f.)

dF(X ir) = dG(X) exp[— cP(ir) — EmX] (18)

The vertical bar indicates that the d.f. is conditioned by the intensities of the
reservoir. G(X), a function depending only on the properties of the system,
is the so-called structure function. Its differential dG is the number of linearly
independent eigenfunctions of the Schrodinger equation. The function 'I
depends on the properties of the system and on the intensities rr of the
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reservoir; LitX is short for mKXK. All the functions involved contain the

volume of the system as a constant parameter. The normalization of dF yields
e = fe_')vdG(X) (19)

This equation has a pivotal role, exhibiting the connection of all the
relevant major theories. Thus suppose we start with the Hamiltonian of the
system involving the phase space coordinates of structureless particles:

H H(q1,. . . Pi,.. . P1)

Then proceeding from here to the Schrädinger equation we arrive at the
structure function G(X). Equation 19 then yields the entire formalism of
MTE. We have indeed for the entropy

S = k( + Xir)
k$dFlndF/dG

and the potential of the grand canonical d.f.
Q = Vw = —kT

Note that whereas the structure function may have discontinuities in the
case of a discrete spectrum, the Laplace—Stieltjes transform 19 yields an
absolutely continuous differentiable çji. (Only the critical points call for
special consideration.)

Contrary to the traditional foundations of thermodynamics on the basis
of statistical mechanics, there is no need to assume that the system has a
large number of degrees of freedom in order to arrive at the continuous
differential—geometrical representation of thermodynamics. Of course, the
large number of degrees of freedom does appear in the reservoir.

The formalism generated along the lines indicated has been called STE,
short for statistical thermodynamics of equilibrium. Its main point can be
simply stated: The formalism of MTE remains valid even in the statistical
case, provided we replace the macroscopic extensive parameters with the
canonical averages of the corresponding random variables.

I briefly note that the formalism admits also another interpretation. We
consider the system as a measuring device, as a sensor that explores the
intensities of the environment. Since in STE, the connection between the
measured extensive quantities and the intensities is statistical, the latter can
only be estimated from the former. The elaboration of this idea leads to
interesting thermodynamic results5.

I wish to point out here a curious analogy. As we go from MTE to STE
we can no longer attribute simultaneous sharp values to the extensive and
intensive variables. This uncertainty is governed by Boltzmann's constant
just as the somewhat similar uncertainty of quantum mechanics is governed
by Planck' s constant.

The connection between the mechanical and thermodynamic formalisms
provided by equation 19 still leaves many questions unanswered It is a
major challenge for statistical mechanics to prove that, assuming reasonable
intermolecular forces, one can actually justify the scale invariance of MTE
in the so-called thermodynamic limit. A great deal has been achieved in this
direction, but the discussion of these results is outside the scope of this paper.
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Although the procedure outlined above brings about the transition from
the mechanical to the thermodynamic variables introduced above, the choice
of the latter is not wide enough to account for the situations of greatest
current interest. Thus we have no parameters as yet to describe, say, crystal
symmetry. To achieve this further enrichment we have to use the well
known Born—Oppenheimer (B—O) approximation. I like to call this pro-
cedure rather the B—O transformation, because it achieves the transition
from the particle Hamiltonian to other Hamiltonians specified in terms of
the spatial configuration of' the nuclei. Please note the plural in this statement.
It is indeed of capital importance that the B—O transformation leads often
to different 'branches', say corresponding to white tin and grey tin, and each
of these leads through equation 19 to one of the primitive fundamental
equations that is to be used in the determination of heterogeneous equi-
librium.

This approach opens up a new avenue for introducing additional para-
meters into the fundamental equation in a systematic fashion. In statistical
mechanics the criterion for choosing such parameters is: take additive
invari ants (or also permutational invariants in the case of identical particles).
This means in practice, the number of particles, momentum and angular
momentum. In the present case we are authorized to take also translational
invariants. (See p 186 of ref. 1). We obtain thus the important parameter of
long range order, called quasi-thermodynamic, because it has no conjugate
intensity.

Another important extension of the theory is to magnetic (and electric)
systems. It is easy to join the couple M, H (magnetic moment and field) in
analogy to density and chemical potential, to the formalism. It is a surprising
aspect of recent studies 24 that this analogy is valid in a quantitative sense
which goes considerably beyond the requirements of the thermodynamic
analogy. It is therefore worth while to point out that this precise analogy is
obtained only under carefully selected experimental conditions. Whereas
pressure, temperature and chemical potential are constant over a hetero-
geneous system in equilibrium, this is true for the magnetic field only for
special geometrical conditions. This is connected with the fact that the long
range dipolar forces interfere with scale invariance. We note that the Ising
model, although expressed originally in the language of magnetic systems,
does not contain the disturbing dipolar interaction. Among its most im-
portant applications are cases in which the magnetization is interpreted as
a quasi-thermodynamic order parameter.

4. CRITICAL POINTS
From the experimental point of view critical points in the phase diagram

correspond to states in which two distinct modifications, such as liquid and
vapour, or domains of opposite magnetization merge into a homogeneous
phase.

According to thermodynamic theory critical points are stabk states in
which the determinant of the stiffness matrix vanishes. In terms of the symbols
introduced in Section 2 we have two equivalent statements:

Dr = 0, r (Pr/X)p, p = 0 (21)
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States satisfying these relations are called spinodal. In general, they are on
the boundary of the metastable and unstable regions, and qualiIy as critical
equilibrium points only when they are on the boundary of the normal
region of stability. Here the system escapes instability by splitting into
distinct modifications, and we see that the empirical definition is equivalent
to the one based on thermodynamic stability.

This equivalence is, in fact, a theorem and enables us to predict that the
compliance coefficients are singular. (This conclusion cannot be reached
from the empirical definition alone.) In the case of a one component fluid we
have IT\ T (J1\ 1I-) = A2 = = (22)

where c, and hTT are the specific heat and the compressibility respectively.
At the critical point A2 0, D2 = 0 implies, k, c —÷ (23)

where is the expansion coefficient. These conclusions are borne out by
experiment. It is noteworthy that they follow from the vanishing of the
determinant of the stiffness matrix, and there is no need to assume that the
elements themselves vanish. The latter situation arises in the case of an
accidental degeneracy with A A2 = 0. Such a degenerate situation actually
prevails in the Ising model, but in this case the degeneracy comes about
because of the symmetry between the states of opposite magnetization.

Accordingly, when I discussed these matters some ten years ago, I duly
stressed the difference between the Ising model and the real fluid6. At that
time it was believed that the c, of fluids is finite at the critical point. The
situation was entirely reversed as, shortly thereafter, more precise measure-
ments showed that the specific heat c, is logarithmically divergent, in close
analogy with the Ising model. We can hardly avoid the conclusion that the
two cases exhibit similar symmetries. While the symmetry between the co-
existing liquid and vapour modifications is by no means evident, such a
symmetry has actually been predicted by the well known lattice gas model
of Lee and Yang9. It is a surprise, however, that this model should prove not
only manageable, but also more realistic than the van der Waals model
of pairwise interacting particles.

In order to give justice to the hidden symmetry of the fluid it is important
to use the density p, with the chemical potential j as the conjugate variables
instead of the more customary V. P7. Note that in MTE and STE the choice
of variables is not entirely conventional, because this choice determines the
type of exchange process that underlies the coupling of systems.

At this point we have arrived at the conclusion of the rigorous theory.
Details have to be put in from experiment, from statistical mechanical
calculations and also from approximate methods within GTD. The following
is hardly more than a list of well known procedures with a few evaluating
remarks.

(1) Van der Waals theory
This is a wonderful tour deforce arriving from a simple particle picture at

the gross features of a fluid system. However, the method of Maxwell con-
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struction has been incorrectly identified with the rigorous Gibbs theory.
Differences of principle are pointed out on p 161 of ref. 1.

(ii) Internal field theory
By introducing an internal field depending on the magnetization, P.

Weiss generalized the concept of intensity in order to cope with the limitations
of scale invariance. This method was greatly developed by Landau and a
further improved modern version is found in ref. 2.

The proper microscopic model to interpret the molecular field theories
is the cellular model. Assuming the cells to be statistically independent
corresponds to the trivial scale invariant case. The internal field theory is one
step better, and takes an average interaction effect of neighbouring cells into
account. What is neglected is the correlation of actual states. The inclusion
of the correlations is achieved in the next approximation.

(iii) Ornstein—Zernike theory

This theory takes intercellular correlations into account and provides an
excellent description of critical light scattering Corrections required by the
best experiments seem to be no more than marginal.

(iv) The Ising model
This is the cellular model simplified to make rigorous calculations possible.

It has been developing into the prototype for most critical points. It was
Onsager's rigorous calculations that led to the discovery of the critical
point exponents as the proper analytical tools to account for critical
phenomena.

(v) Critical point exponents
The introduction of this technique represents a turning point in the thermo-

dynamic theory of critical points. Under normal conditions the thermo-
dynamic fundamental equation is an extremely smooth function and the
method of power series expansion is entirely justified. When using this
method in his theory of continuous transitions, Landau did not suspect that
these transitions might be singular. In contrast, my own approach was
always centred around the importance of singularities, but lacking the proper
technique I chose to confine myself in GTD to results of a topological
nature, leaving details to statistical mechanics. However, in the last few
years the new technique developed to a point where it can no longer be
ignored by students of thermodynamics. In view of the wealth of results
opened up for study I can do no more than whet your appetite for further
study.

The underlying mathematical idea is simple enough. In order to make
power series expansion applicable we modify as follows:

where x tends to zero at the critical point and A is the critical point exponent.
Logarithmically divergent functions are associated with an exponent
A = 0. The relevant variable is often the temperature expressed in terms of
the reduced variable: t = (T — T)/T. The same symbols are used for the
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thermodynamically analogous exponents for fluids, magnetic systems and
more general order--disorder transformations. Here are some examples:

ft
or M-(ti'3

2 fi3Iv1 -
P = or= (t v

In the case of ct and ? it is conventional to use primed indices below and
unprimed above the critical point.

The first question that comes to mind is: how good are such representa-
tions? I confine myself to referring to Figur.e 1 taken from a recent paper by
M. Giglio and G. B. Benedek8t.

a)

E
I-)

a)

:1

(PG — PL) (24)

2

io6

5

2

5

2

Reduced temperature t(7 T)/T
Figure 1. Plot of (8P/öI4T along the vapour and liquid sides of the coexistence curve of xenon
as a function of the reduced temperature t = (7 — T)/1. Open circles show vapour side;

closed circles show liquid side.

The second point is that inserting the representations 24 into the standard
thermodynamic formalism yields inequalities such as the Rushbrooke
inequality:

(25)
t I am indebted to the authors for letting me use their remarkably accurate results. They

pointed out to me in a personal communication that the quality of their plot depends very
markedly on the use of the variables p, . The constancy of the two exponents and their co-
incidence is lost in the plot of the conventional compressibility. This confirms the suggestion
of Chase and Tisza7.
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Such inequalities are borne out by experiment, and indeed they have
proved helpful in spotting errors in the determination of exponents.

More recently a number of so-called scaling laws have been proposed
which tend to bring about a greatly increased coherence in the field. I
confine myself to referring to the scaling law proposed by Kadanoff2 which
can be explained most simply in the present context.

Kadanoff considers an Ising model of lattice constant a0 and defines a
cell of size La0 satisfying the relation

(26)

where is the coherence length. Kadanoff argues that the properties of the
site and cell will be identical provided we scale the magnetic field H and the
reduced temperature as follows:

= LX

(27)
= L3'

I refer to the intensities effective in the cell description, whereas H, t
refer to the site. The main result is that all nine exponents mentioned above
can be expressed in terms of x andy. The situation in this respect is remarkably
good. Small discrepancies only arise in connection with the exponent of the
correlation length describing, say, the extent of the short range order of
spins on the paramagnetic side of the critical point However, this pehnomenon
is already a long way from the traditional domain of thermodynamics.
Assuming that the scaling law will continue to hold up under the close scrutiny
it is being subjected to, we can rationalize its meaning within GTD as follows:
We known that the scale invariance of the macroscopic system must be
limited, because any subdivision must stop at the single site; the scaling law
is a generalization of the principle of scale invariance, to which it can be
reduced if x and y are set equal to zero.

CONCLUSIONS
Generalized thermodynamics is a flexible framework accommodating

many theories beyond those traditionally considered. Thus open systems
and their fluctuations can be rigorously handled without invoking specific
microscopic models. The extension of Gibbsian phase theory is consistent
with the recent results concerning the phenomena in the neighbourhood
of the critical points. The technique of critical point exponents made many
of the classical procedures of approximation obsolete. However, this affects
only various approximations to the main theory. Thus the shortcomings
of the van der Waals theory are often ascribed incorrectly to the Gibbs
theory. Although the latter is also in need of corrections and additions, when
all this is done, the basic structure of the theory is seen to be considerably
strengthened.
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