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ABSTRACT
The rigorous evolution equation for the one-body distribution function f(t)
describing an imperfect gas is not closed according to the investigations of
Bogoliubov, Born, Green, Kirkwood, Yvon and others (B—B—G—K-Y hier-
archy). The analysis of this equation is made in terms of connected diagrams.
It is shown that in the bulk limit this equation can rigorously be transformed
into an equation which is closed with respect to f(t) and which contains a given
initial correlation. The latter equation forms a basis of discussing various

problems related to irreversibility and transport phenomena.

1. INTRODUCTION

It has been known for many years that the Boltzmann equation provides
a good description of transport phenomena for a dilute gas of particles
interacting with short-range forces. While this equation is a closed equation
with respect to the one-body distribution function f(rp, t), the rigorous
evolution equation for f is not closed according to the investigations by
Bogoliubov, Born, Green, Kirkwood, Yvon, and others1'2. Recently much
effort has been made to derive and generalize the former equation from the
latter by introducing approximations. Unfortunately, most of the approxima-
tions previously proposed by various authors seem to be motivated by
mathematical tractability rather than physical reasoning. To this category
of approximations belongs Bogoliubov's f-functional dependence assump-
tion of many-body distribution functions', truncation of the hierarchy through
random-phase arguments3, the factorizability of the initial many-body
densities into one-body densities" , and others. Although these assumptions
were employed to obtain highly useful results in certain instances, since they
were introduced at the beginning of the theories, the validities of the theories
and their results are often not clear.

In 1955, Van Hove developed a different approach to the problem5. By
introducing an infinite-order time-dependent perturbation theory, he
attempted to determine the structure of a collision operator which describes
a general interaction process. Since then, this search for a collision operator
has been pursued by many, including Kohn and Luttinger6, Prigogine,
and others79. In particular, Balescu8 was successful in determining the
collision term for a plasma, which takes account of the dynamic Coulomb
screening. This collision term is now known as Balescu—Lenard's term8' 1O
A notable advantage of this approach is that if successful it could clarify
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the validities of the above-mentioned various assumptions in addition to
its own merit of providing a computational method for a transport coefficient.

In 1957 Kubo published a classic work in the theory of transport pheno-
mena' . By solving the Liouville equation to first order in the external electric
field, he formulated a rigorous closed expression for the electric conductivity
in microscopic terms without any guesswork in regard to the collision
coptribution, which was the crux of the derivation of the Boltzmann equation.
This formula is, today, known as the current correlation function formula'2
Concurrently, much effort has been made to formulate other transport
coefficients, such as the viscosity coefficient, which are related to thermo-
dynamic perturbations rather than electromagnetic forces1 3• At the present
time, it is generally believed that these coefficients, too, can be expressed
in the form of time-integrals of current correlatiOn functions. The evaluation
of a current correlation function formula is by no means straightforward in
spite of its compact expression. Various methods of computation including
those already mentioned" 210 have been proposed'4, each being different
from others in spirit and degree of sophistication1 .

In this paper it will be demonstrated that in the bulk limit where N (particle
number) —* , Q (volume) —÷ while N1 Q remains finite, there exists a
rigorous closed equation for the one-body distribution function f. It is done
in the following steps. The hierarchy equation of lowest order 2.10 contains
an integral of the product of the pair potential v and the two-body distribu-
tion function f2. This integral is analysed in terms of connected diagrams
and is shown to be expressible in terms of the one-body distribution function
f and initial correlation functions x. Since the latter, x' are to be given as an
iiitial condition, the equation obtained is closed with respect to f. It is,
however, highly non-linear and non-Markoffian. In obtaining this closed
equation, no approximations other than those which can be justified in
the bulk limit, are introduced.

From the closed equation one can derive a generalized Boltzmann equa-
tion, which is closed in f, which can rigorously describe linear and non-linear
transport coefficients, and which no longer depends on the initial condition.
This means in particular that Bogoliubov's conjecture of the closure in f
is in fact correct although his two explicit assumptions mentioned earlier
for achieving this closure are not. The analysis in terms of connected dia-
grams is also useful in the practical calculation of transport coefficients.
In fact it has been shown earlier16 that it allows one to develop the formal
density expansion of a transport coefficient in an unambiguous manner.
Unfortunately this density expansion is in general divergent, see below.
A serious restrictive feature of the connected diagram analysis is that it
applies only to a system obeying classical statistics. Although a gas of
monatomic molecules in a certain temperature range should fall in this
category, systems of great interest such as an electron gas at high density
which obeys Fermi—Dirac statistics, cannot be treated by the present method.
This shortcoming can be overcome by working with double-time Green's
functions (g>, g <) in place of the single-time one-body distribution function
f. The existence of a closed set of equations for (g>, g<) which rigorously
describe transport coefficients can be established' ,but will not be discussed
in the present paper. The divergence difficulty of the density expansion of a
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transport coefficient mentioned earlier can be also overcome by working
with Green's functions, which will be discussed elsewhere.

Obviously, the essential point in the present theory is the demonstration
of the existence of a closed evolution equation. Previously this was done
for a system of interacting quantum molecules obeying classical statistics1 .
The same technique can be extended to a classical imperfect gas. Since the
technique is rather involved and since the classical system can be handled
with less conceptual complexities, we shall review the essential steps of the
demonstration for a classical gas.

2. B—B-G-K-Y HIERARCHY

Let us consider a system of particles interacting with pair forces, charac-
terized by the Hamiltonian

1
H s—p + A v(r — rk)

j>k
hW +2

j j>k
H0 + AV (2.1)

where h0 and v are respectively the kinetic energy and pair potential energy.
The one-body and two-body distribution functions will be defined by:

f(rp, t) (N!) — 1 n d3r)(II dp)t(rp) p(r 1p, r2p2,.. . , t)

Tr {t(rp) p}

f2(rp, r'p', t) Tr{i2(rp, r'p')} p(t) (2.2)

(rp) — r) 3)(p — p) (rp)

i2(rp, r'p') ö3(r — r) c53(p — p) 53(r' — rk) 3)(p — Pk) (2.3)j I'

p(t) is the A-body distribution function which obeys the Liouville equation

.ap(t) . H H )
p(t1 (2.4)

Here the operator denoted by will be called a Liouville operator; it is a
differential operator which is generated from a given Hamiltonian H and
which is convenient in the description of the time development of the system.

Differentiating f(rp, t) with respect to t and using (2.4), one obtains

= —iTr{t(rp)'p(t)}
— ITr{fJ)(rp)h)p(t)} — iA Tr{f(rp)vou!o)p(t) (2.5)

j j*k
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where the script (tf, v) are the Liouville operators corresponding to (h0, v), e.g.

o
1. ôr, 0Pk ôPk ôrk

— i.. (2.6)

The first term in the third member of 2.5 can be written as

— i Tr{i(rp) hW>p(t)} = — . - f(rp, t)

— ih0(rp) f(rp, t) (2.7)

In a similar manner the second term can be written as
— iA Tr {ith(rp) v

v(r—r2)= —)$$d3r2d3p2 . —- f2(rp,r2p2,t)
ur

— (2.8)

where the symbol tr2 means the integration with respect to the phase-space
variables of the second particle. Therefore one can rewrite 2.5 as

[- + iho(rp)] f(rp, t) = — i2 tr2{v"2> fl2)} (2.9)

This equation can be written in a more familiar fashion

[- +._]rp, t) =
55d3r'd3P'

iV(r r') i3f(rpr'p' t)
(2.10)

This is the lowest-order equation of the B—B--G—K—Y hierarchy. The
notations, more abstract and more concise than usual, which were used in
the derivation of 2.10 will be found convenient in the following development
of the theory.

3. CLOSED EVOLUTION EQUATION FOR DISTRIBUTION
FUNCTION f

The Hamiltonian H and therefore the corresponding Liouville operator
are independent of time. The formal solution to (2.4) is

p(t) = exp (— it*)p(O) exp (—it) p

In general a function of an operator is defined as a polynomial or a power
series, e.g.

exp(—it.) 1 — itX' + (—it)2'2 — (3.2)

This operator exp (— it*') is a function of the coupling parameter )L, and can
be expanded in a power series of )L (perturbation series):
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exp(—it) = exp(—it0) {1 + (_12)kJ dx1 J'dr2.. . dr

x '(t1)'K(r2). . . (3.3)

exp(it'0)' exp(—it)r0) (3.4)

A many-body distribution function p to be specified at the initial time
t = 0 contains all the information about the inhomogeneity and particle
correlation of the system at t = 0. The latter are, however, more conveniently
described by the reduced distribution functions f, f2 which may be
defined through 2.2 with the use of time-independent p. The particle correla-
tion can be more appropriately described by the correlation functions
defined by:

f) f(r1p1) X(ripi) X"
2) f2(r1p1, r2p2) X1X2 + 2(r1p1, r2p2)

x"x +
f(l23) W(2)(3) + + + + (3.5)

It is clear that one can specify the initial condition by giving x f, X
rather than p. In fact this specification is obviously more realistic.

Let us now consider

i2 Tr {i(rp) vuk)p(t)}jk
= — i1. Tr Ij)(Jk) exp (— it)p} (3.6)

which appeared in 2.5 and which was transformed into an integral involving
f2 in 2.10. We expand exp (—its) in a perturbation series by means of 3.3,
and regard p as the N-body reduced distribution function N, and expand the
latter as

N N
N) fl + [x2) fl + (similar terms obtained by permutations)]

1 3
N

+ + ... (3.7)
4

the Nth equation of 3.5. We represent terms in the expansion of 3.6 by
diagrams as follows.

We draw N horizontal solid lines for the N particles. The operator ftl)
is represented by the open circle at the left end of the particle line j, and

by a vertical dotted line, called a potential bond, connecting the pair of
particle lines (j, k) at their left ends. Corresponding to

exp (1To'r) (Jk) exp ( U'0z)
= exp [ir(hW + h)] ,)jk) exp { — i'r(hW + h)] (3.8)

we draw a potential bond (j, k) at t (time) = r, where the time is measured
from the right to the left. The Xi, 1 2, are indicated by broken lines, called
correlation bonds, connecting the right ends of the particle lines. In this way
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we can represent all the expansion terms in one-to-one correspondence.
Some typical diagrams are drawn in Figure 1.

A diagram is said to be connected if the set of particles describing the
N

3

6 1

I

IVM

(ci) (b) (c)
Figure 1. Diagrams representing components of statement 3.6. Diagram a is connected and b

and c are disconnected.

potential and/or correlation bonds cannot be separated out into two or
more subsets. Otherwise the diagram will be called a disconnected one.
For example, the diagram b is disconnected.

None of the disconnected diagrams contribute to 3.6. This can be proved
with the aid of the following two theorems:
Theorem U Any diagram containing an M-type potential bond contributes
nothing.

A potential bond of M-type is any bond, like the VM in diagram b, which sees
nothing but the two free particle lines on its left. A particle line segment is
said to be free if the diagram is broken into two by cutting it. This theorem
is proved as follows. Let us suppose that an M-type potential bond connects
the pair of lines (j, k) at t = r. The contribution of the diagram will then
contain a factor (see 3.8)

trtr"1{exp [i'rhW + ixhJ Uho)g(ik. . .
(3.9)

where g is a certain function of the variables corresponding to the particles
(j, k) and possibly others. This quantity 3.9 can be decomposed into vanishing
integrals of the following three types:

ffd3rjd3p1h)g1(jk...) = 0

trt%hg . . )} 0
trUkrv('g3 . . 0 (3.10)

which can be simply shown by integration by parts.
Theorem II Any diagram containing a correlation bond with one or more
free lines on its left contributes nothing.

Diagram c contains a correlation bond with a free line and yields a
vanishing contribution. This is because such a correlation bond contributes
a vanishing factor of the form

I)} = 0, 1 2 (3.11)

which can be in turn proved from the definition 3.5. In fact, from the second
equation 3.5, tr11 {x12} = tr"){f12)} — tr1{t1} = n" — = 0;
such proof can be extended to the case of higher 1> 2. This theorem is valid
rigorously in the bulk limit.
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A disconnected diagram has, by construction, a potential bond and/or
a correlation bond, of the types referred to in Theorems I and II, and yields
a vanishing contribution. Disregarding all disconnected diagrams, we have
only to deal with connected diagrams containing the open circle at t = t.

We may simplify the drawings by omitting particle lines without potential
bonds. For example, we may represent diagram a in Figure 1 as one com-
ponent of diagram a in Figure 2 where in addition we leave out indices for
particle lines. By such an unindexed diagram we shall imply a collection of
particle-indexed diagrams of the same structure.

The power of these two theorems is not limited to the elimination of the
disconnected diagrams. In fact it allows elimination of a large number of

cL

(ci)

VM

(L

,'
1

.

6

(b) (c)
Figure 2. The unindexed diagram a represents the collection of indexed diagrams of the same
structure as that of diagram a in Figure I Connected diagrams b and c do not contribute
because they contain an M-type potential and a correlation bond with a free line, respectively.

V— ly V
6

(a) (b)

Figure 3. Diagram a contains a d-part and b, two g-parts.

connected diagrams, too. For example, diagrams b and c in Figure 2 are
connected diagrams but they contain respectively an M-type potential bond
and a correlation bond with a free line, and thus contribute nothing.

A connected diagram will in general contain several free line segments.
Some free segments are indicated by check marks Jin Figure 3. A diagram
will contain a certain number of those parts which consist of non-free line
segments, potential bonds and correlation bonds, and which are connected
by free segments. Such a part will be called a d-part or g-part according to
whether or not it contains a correlation bond. Diagram a in Figure 3 has
a d-part and diagram b two g-parts.

If a diagram should contain a g-part suspended by two free segments
corresponding to the same particle or a d-part standing to the right of a free
line segment, it could be reduced by suppressing the g- or d- part Otherwise
the diagram is called irreducible. In the process of reduction, only the particle
line which is marked by the open circle should not be suppressed. With this
rule, the reduction becomes unique. Conversely, reducible diagrams can
be obtained from an irreducible diagram by dressing its free particle lines
with g- and/or d- parts.

We have so far considered those diagrams representing 3.6. We may
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represent by similar diagrams the expansion of the one-body distribution
function

f(rp, t Tr{) exp (—its') p}. (3.12)

The only difference will be that we should omit the potential bond at t = t
which appeared in the representation of 3.6. Analysing in a similar manner
we can easily see that any diagram giving a non-trivial contribution is a
connected one containing a number of g- and/or d- parts, one of which con-
tains the open circle representing the Typical diagrams are drawn in
Figure 4. It is immediately seen that all such diagrams (except one) are redu-
cible to the unique diagram b in Figure 4, which is free from any potential or
correlation bond.

0-

(c) (d)

Figure 4, Diagram a, representing a component of f(rp, t), is uniquely reducible to diagram b.
Conversely, diagram a may be obtained from b by dressing the free line with g-parts.

The diagrams drawn here appear to represent the past history of those
particles which contribute to the change in f(t) at t t, and the g- and d-
parts describe the effects of interaction processes.

Let us consider an irreducible diagram containing a g-part. This contribu-
tion can always be expressed in the form of a certain operator g acting on the
product of the one-body distribution function corresponding to the system
without the interparticle potential (). = 0).

f0(t) Tr{Iexp (—iw°0)p}
= tr {exp(_ith))} (3.13)

m(y)
= (H tr3)g(y) f flgf0 (3.14)

V 2 1

where m(y) is the number of free lines at the right of a chosen irreducible
structure y.

For example, the contribution of the irreducible diagram a in Figure 2
can be written down as

(— i,t)2 tr{v exp [— it(hg + h)] dtv(ti) exp (it 1h)
x exp (it1h) fW(ri) f(r1)} (3.15)

Consider now a reducible diagram which upon reduction gives rise to an
irreducible diagram. The former can be constructed from the latter by
dressing the free lines on the RHS.

By construction the two sets of particles involved in the evolution of any
two of the originally free lines are separated from each other. Furthermore,
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the structures of all those subdiagrams which upon reduction give rise to
a free line can be seen to be identical with the structures of all the connected
diagrams for f(t) in the bulk limit. In this identification it is important to
notice that the dressing of the free-particle line should be made always to
the right, i.e. in the direction of decreasing time since dressing made otherwise
would necessarily introduce an M-type potential as seen in the diagram b
in Figure 2, and therefore would give no contribution. These analyses lead
us to write for the contribution of all the irreducible diagrams containing g-
parts and the reducible diagrams generated from them

m(y) m(y)

(11 tr) g(y) H f(k) gITf (3.16)
y 2 1

which is obtained by simply replacing every f0 in 3.14 with f and by summing
over all irreducible diagrams.

The irreducible diagrams containing d- parts and the reducible diagrams
generated from them can be analysed in a similar manner. Their contribution
may be symbolically written as

dHfflx (3.17)

which may or may not contain the factors in f but must include one or more
of the initial correlation functions y,, I 2.

Thus, we obtain for 3.6

—

Jk p(t)} = gflf+ dfTffl (3.18)

Using this and (2.7), we can rewrite (2.5)as

(- + iho) f(t) = gflf+ dHmx (3.19)

This is an evolution equation which holds rigorously in the bulk limit.
Since the correlation functions are to be given as the initial condition, this
equation is a closed equation with respect to the distribution function f
in contrast to the hierarchy equation 2.5 from which it is derived. The equa-
tion has, however, infinitely many terms, most conveniently defined in
connected diagrams; and it is non-linear and non-Markoffian.
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