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ABSTRACT

A differential equation of state is presented for a monatomic gas without virial
interactions between its particles. Together with suitable boundary conditions

this defines a macroscopic concept of the 'perfect' gas.

INTRODUCTION
Since the time of Boyle, Mariotte and Gay—Lussac many people have

considered how an 'ideal' (or 'perfect') gas should be defined. Rather early,
the relation

p=vkT (1)

was accepted, p being the pressure, v the number density (v 1) and T the
absolute temperature of the gas. As is well known, this thermal equation of
state does not completely determine the thermodynamic properties of the
substance. If one also wishes the caloric equation of state, one must known
an additional function of one variable, e.g. the molecular heat distribution
c(T) whence the molecular energy

u(T) = J c(T)dT (2)

may be obtained. From both equations of state one derives the molecular
entropy

s(T, v) c(T) T' dT — logp (3)

and from these the chemical potential

1i(T, p) = kT + u(T) — Ts(T, p/kT) (4)

which contains the whole thermodynamic information about the substance,
because it is a thermodynamic potential. An important quantity measuring
the 'power of diffusion' is the fugacity p =e_T. We call a fluid that obeys
equation 1 an ideal gas, distinguishing this notion from that of a 'perfect
gas', which we are going to describe.

243



G. SUSSMANN AND E. HILF

A simple microscopic model that yields equation 1 by classical statistical
mechanics (both Galilei or Lorentz invariant), assumes the gas to consist of
particles that have no virial interactions which means zero range repulsions,
the potential energy of which vanishes in the mean, nevertheless leading to
thermal equilibrium. The isochoric heat c, is determined by the intrinsic
dynamics of the particles (molecules). In the simplest case of elementary
particles (atoms) one obtains

c(O) = k, c(O) 3k

for the 'non-relativistic' or low velocity limit N and the 'extreme-relativistic'
or high velocity limit E.

The same microdynamic picture yet with quantum instead of classical
kinematics no longer reproduces equation 1, although one is still inclined
to consider such a gas to be ('ideal' or) 'perfect'. Only in the 'quasiclassical'
limit C of large quantum numbers is the equation 1 regained asymptotically,
whereas in the limit D of long de BrogUe waves the gas behaviour 'degenerates'
completely. These remarks lead to the microscopic version1 of our concept:
A perfect gas should consist of elementary particles without virial inter-
actions. As temperature and fugacity are unrestricted, all limiting cases (N,
E, C, D, and their combinations NC, EC, ND, ED) are contained as limiting
cases of the normal situation, which of course is treated by Lorentz invariant
quantum statistics. In this respect the perfect gas concept is thermally much
broader than that of an ideal gas. On the other hand, it is much narrower
with regard to the caloric properties of the gas.

What is the macroscopic equivalent of this fundamental microscopic
abstraction? H. Einbinder introduced2 and P. T. Landsberg proposed3 the
relation

cg=forNp = g With g= for E
between pressure and the energy density v : u as a macroscopic charac-
terization of what we call a perfect gas. We shall discuss this definition 6
oniy in the two indicated limiting cases 6N or 6. So we are left with the
problem of interpolating between these two asymptotes.

I. DIFFERENTIAL EQUATION OF STATE

According to our microscopic definition of the perfect gas, we have to
consider the well known phase space integrals:

v =
BJ

dw [w(w+2mc2) (w + mc2)

=
BJ

dw [w(w±2mc2 (w + mc2) w

p =BJ dw[in (w + 2mc2) w
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with

B4icc3h3(2s + 1) (10)

In these equations m, s, w denote the (rest) mass, the spin, and the kinetic
energy of the identical particles, respectively (c being the velocity of light
in vacuo and h Planck's quantum of action). The statistical parameter
takes the values 0, + 1, —1 for Maxwell—Boltzmann, Bose—Einstein, and
Fermi—Dirac statistics, respectively. As usual,

p
(11)

are the equilibrium variables for particle, energy and volume exchange,
respectively.

The partial derivatives of the phase space integrals combine to the
following differential relations:

(12)

J3p+v=0, $p+e+p=0 (13)

and
— e) = mc2 (2e — 2p) (14)

Of these, equations 12 and 13 are general thermodynamic identities, true
for any homogeneous substance. This can be seen from the total differential

dy = —vd — edfl (15)

of the thermodynamic potential y(, /3). Its Maxwell relation 12 is therefore
a simple consequence of 13.

On the other hand, the relation 14 is specific for the gas, as indicated by
the occurrence of the mass parameter m. We propose to use equation 14 as
the defining relation of the macroscopic concept of a generalized perfect gas.
From this derivation it is clear that the microscopic formulation must be
contained in the macroscopic one. Furthermore, Landsberg's definition,
though it might be more general than the microscopic one, is asymptotically
regained from ours, since in the limits of infinite or zero masses, 6N or 6F are
particular solutions of 14. To what extent our macroscopic definition is
more general than the microscopic one, is a question that remains to be
examined.

II. GENERAL SOLUTION OF DIFFERENTIAL EQUATION

Our problem now is to find the general solution of equation 14 for the
two functions p(x, /3) and /3) which are interconnected by the second
equation of 13. Because of 15 we may switch to the one potential /1)
arriving at the second order partial differential equation

[(E + 3/3_i — 313_2) + mc2(2 + 3/31)a,] y 0 (16)
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It is homogeneously linear and of hyperbolic type with non-constant co-
efficients.

Replacing , f3, y by the dimensionless variables

x — mc2f3, y mc2f3, 2 B$3y
we achieve a considerable simplification that transforms 16 into

(8 — — 3ya) z = 0

This version immediately exhibits the characteristic curves x + y = and
x — y = a), where each of the parametrizing constants and co may assume
any real value.

The next step is to construct a convenient form of the general solution
that yields the unknown z(x, y) in terms of arbitrary initial distributions
z(x, 55) and ;z(x, j5 at any isotherm y = 57. Using the Green—Riemann
method of integration of hyperbolic equations4, this solution reads

z(x, y) (y/j7) [z(x — y + 57, 55) + z(x + y — 57, 57)]

+ {(,55) — z(x,57)(351' + s,,)] R(x —

where R(x — , y,57) denotes Riemann's propagator. Its defining properties

— + 3y 1 ) R(x — ;, y, 57) = 0

and

R(y — 57, y, j7 = (y/57)1 = R(57
— y,y, 57)

are fulfilled by the fundon

R(x — , y,57) (y/57)P(2q + 1), q = — 2 (x —

as is shown in the Appendix. Legendre's function P(1 + 2q) F(—4, 1;
—q), primarily defined fo — 1 <q 1 by the hypergeometric series, may
be continued analytically to all positive values of q.

For infinite values of q one finds5 the asymptotic expressions

P(2q + 1) (8/it) q, P(2q + 1) (12/it) q* for q

Using this result, we deduce the initial-value representation

z(x, y) = tim (y/y [z(x — y + 57, 57) + z(x + y — 57, 53)]

fx+y
— —v dlimji3 [y2 — (x — )2]+ 6yz(,O)

it Jx—y y-'O
— [y2 (x )2] az(x, 0)} (22)

the boundary strip of which has been shifted to the limit of infinite tempera-
ture.

246



GENERAL DEFINITION OF THE PERFECT GAS CONCEPT

Ill. PHYSICAL SOLUTIONS
This form of the general solution of equation 18 can be converted into the

more convenient form

z(x,y) = {Sg_(x) + $÷g÷()}[(x )2 — y2]d (23)

provided the indefinite integrals converge at infinity. Apart from this zeroth
boundary condition, which is rather weak, the border distributions g_(x)
and g(x) may be expressed by a linear function in terms of the initial
distributions z(x, 0) and az(x, 0).

We are now in a position to formulate ourfirst boundary condition

g(x) = 0 (24)

for which no simple physical interpretation is known.
On the other hand, our second boundary condition postulates simply that

for extreme dilution a generalized perfect gas should behave as an ideal one.
Because of 15, 12 and lithe equation 1, now to read asymptotically only,
can be reduced to v or

—y for — cc with f3 fixed (25)

By 17, this can be transformed to z —z for x -+ cc with y fixed. Because
of the identity z(x, 0) = 2g(x) we arrive at

g÷(x) Be (26)

with an integrption constant B> 0, the value of which remains undeter-
mined in this context.

We see now that the zeroth boundary condition is already contained in
the first and second ones. Inserting 24 and 26 into 23 yields with 17 JUttner's
classical result6

y(,f3) dwe./[w(w + 2mc2)]3 for —+ cc (27)
is retained. This amounts to the ideal asymptote

yx, fi) = Be J9' eK2(f3) for C (28)

where K2 denotes the modified Bessel function The undetermined integra-
tion constant B may be absorbed into the fugacity e Simple consequences
of 28 are the 'ideal' gas law 1 and the monotonic property c(T) > 0 with the
limits 5.

Thus our macroscopic definition of a generalized perfect gas has been
fully developed. It is determined by the differential equation of state 18
together with the two implicitly formulated boundary conditions 24 and 26.
From 18, 23 and 24 it follows that one function of one variable is arbitrary up
to the asymptotic behaviour 26. This situation is similar to that of an ideal
gas where one function, c( T), remains undertermined.

The microscopic concept of a perfect gas proves to be the choice

g÷(x) = B(eX _)_1 (29)

with the value of B given by 10.
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APPENDIX
The interpretation of (a — a + 2)Ly1 8,) z = 0 is sketched.
Riemann's initial-value representation of the general solution reads

z(x,y) (y/ [z(x — y + , $) + z(x + y — i, Y)I
+ d [az(.,) — z(, j)(22r1 + ag)] R2(x — , y, j3)

if

(E — + 2Ay')R(x — ,y,j3) 0

and
R,(y — j5,y,j) (y/y_)A R,(j —

By these conditions the propagator R(x — , y, j) is uniquely determined.
It may be calculated from the double power series

RA(x — 5i'
——

Ov=O !v! i)k\v) (2j)P+v

if (x — )2 + (y — .i)2 <y2 or even — — (y — j5) <2j and (x —
+ (y — i)l <2j3. As is easily verified, R,(x — , y,3) = (y/j)AG(q) with
q = j7)_l [(y — — (x )2J f

[q(1 + q) + (1 + 2q) aq — A(2 + 1)] G(q) = 0,

This is Legendre's differential equation, if 2q + 1 =(y)1 [y2 + j32 —

(x — )2] is taken as argument instead of q. The solution G(q) = P(2q + 1)
is uniquely determined by its value 1 at 2q + 1 = 1, this being a singular
point of the ordinary differential equation.
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