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ABSTRACT
The traditional introduction of the chemical potential is through the assump-
tion that the entropy is a differentiable function of U, V and the molar quan-
tities of the chemical components; but entropy and energy functions are defined
only for states of closed systems. An alternative introduction is accordingly
given here. It meets this difficulty, and is in accordance with recent axiomatiza-
tions. An outline of the proposal is given, followed by a critical analysis of the

assumptions involved.

Traditional thermodynamics introduces the chemical potential starting
from the assumption that the entropy S of an open system can be regarded
as a differentiable function of the internal energy U, the volume V and the
molar quantities of the different components Na, N However, the
definitions of S and U refer to adiabatic linkage, and this presumes closed
systems.

Landsberg1 meets this criticism by the introduction of a "fourth law"
which implies that for a certain class of systems (more precisely: for certain
sets of states) the entropy is a first order homogeneous function of U, V,
Na, N Tisza2 introduces a phase postulate: a simple system exists
potentially in a number of phases, which are spatially homogeneous material
extensions, for which a continuous first order homogeneous phase entropy
function S(U, V. Na, Np,...) is defined. Both assume the existence of a
function S(U, V, Na, Na,...) for a precisely defined class of open systems,
abandoning an operational definition of entropy and internal energy.

This paper intends to give an alternative, which does not take refuge in
an assumption of the above kind, and is in accordance with the operational
approach to entropy and internal energy of recent axiomatizations37:
the domains of definition of entropy and energy functions remain restricted
to closed systems. The approach is so simple, that it can serve to introduce
the chemical potential in undergraduate courses. I will start with an outline,
suitable for teaching; afterwards I will justify the assumptions which are
involved and in doing so prepare a more formal theory.

Outline of a simple introduction of the chemical potential
Consider a system, which is materially connected with respect to the
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component x with a homogeneous pure substance ci, through a wall perme-
able exclusively for the component . The two systems together, denoted by
Z12, are closed. The part systems are denoted by Z and Z; the stars
indicate that these systems are open (see Figure 1).
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Figure 1. The pressures P1 and '3e2 of the environment are independently variable; the en-
vironment has a unique temperature 7;; a: wall permeable to component exclusively; all other
walls are diathermal, i.e. T1 = = 7;; the pistons are freely movable, i.e. P1 = e1, = 12e

For system Z12 an internal energy function U12 and an entropy function S12
are defined. The volumes V1 and V2 of the part systems and U12, or S12,
form a complete set of independent variables of the system Z12. (1)
For an infinitesimal quasistatic change of state of system Z12:

dU12 = TdS12 — P1dV1 — P2dV2

For the homogeneous pure substance Z one can write:

V2 =N°v° (3)

v = v(P, T) (4)
rr* — jO 02 —

u = u(P, T)
S =Ns
s0 = s(u, v°) = s°(P, T)

The functions U and S, with variable N, are called the "extended internal
energy function" and the "extended entropy function" respectively. The
stars indicate that they are not energy functions and entropy functions in
the strict sense (i.e. accessibility functions). For constant N°, however, the
functions are reduced to energy functions and entropy functions for the
closed pure substance o. v°, u0 and s° are the molar volume, energy and
entropy of the pure substance ci; the superscript 0 indicates that we are con-
cerned with pure substances. Define also:

dU = dU12 — dU
dS = dS12 — dS
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Suppose that an infinitesimal isothermal quasistatic process of Z12 is
associated with the transport of a quantity dN from Z2 to Z1. Then:

dU dU12 — dU = TdS12 — P1dV1 — P2dV2 — dU
= TdS + TdS — P1 dV1 — P2dV2 — dU
= TdS — P1dV1 + Td(Ns) — P2d(Nv) — d(N°u°)
= TdS — P1dV1 + N(Tds — P2dv — du)

+ (Ts — P2v — u)dN
= TdS — P1dV1 — gdN (11)

Now define the chemical potential of the component a in the system Z:
ji, as the molar Gibbs free energy g° of the pure substance ZT in equilibrium
under material connection with the system Zt (12)

Thus dUt = TdS — P1dV1 + 1dN1 (13)

This outline will conclude by proving that for arbitrary states z1 and z3:
z1 and z are in equilibrium under material connection with respect to
component a, or abbreviated "in a-equilibrium", if and only if p(z) =
and T(z1) = T(z).

If j(z1) = p(z) and T(z1) = T(z), then for states of a pure substance a
in equilibrium with z and z, say z and z' respectively, g(z) = g(z')
and T(z) = T(z') = T(z) = T(z). Now (i3g°/äP) = v° > 0, therefore P(z)
= P(z) and consequently z = z'. Thus z1 and z are in "CL-equilibrium"
with the same state, and consequently also in mutual CL-equilibrium. If
z and z are in mutual "CL-equilibrium" then they are in "CL-equilibrium"
with the same state of a pure substance a, as a consequence of the transitivity
of "CL-equilibrium". Therefore jz) = t(z) and T(z1) T(z)t.

A critical analysis of the outline proposed
The above argument contains a number of terms and statements which,

in a more rigorous treatment, need explanation and justification.
(a) Every presentation of thermodynamics contains an appeal to the

existence of thermal equilibrium, pressure equilibrium, material equilibrium
with respect to chemical components at, 1E (or "a-equilibrium"), etc., with
properties which are more or less explicitly defined, e.g. the zeroth law.
In a formal approach this implies an assumption concerning the existence
of equivalence relations defined on the set of all possible pairs of states of
systems to which the relation considered can be applied3' '. Systems are in
such an approach sets of (equilibrium) states: Z = {z, z, z', .. .}. The pair
of states zz belongs to the "a-equilibrium equivalence relation" or "a-
connection" C, if the systems Z1 and Z3, in states z1 and z respectively
are in equilibrium when materially connected with respect to component a
(through a semipermeable wall). This is a rule of interpretation. a-Connection
is applicable to all systems which contain the component a. In traditional
thermodynamics it is always tacitly assumed that a-equilibrium is reflexive,

t NOTE: Kestin8, and also Vanderslice et al.9, offer a similar approach. In their derivation
the system Z is, however, an infinitesimal system, and they assume that ds = 0, dv = 0
and du = 0, which can be criticized.
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symmetric and transitive. A further property of "x-equilibrium", "3-
equilibrium" etc. is that they imply thermal equilibrium or "0-equilibrium".

(b) Similarly an appeal is made to the existence of different types of isolation,
e.g. adiabatic, energetic or material isolations. In a formal theory7, this
will be expressed in existence statements of "accessibility relations", which
are equivalence relations defined on the cartesian products Z x Z7. In
the case of adiabatic isolation and energetic isolation the systems Z. are
closed systems; the pairs z' contained in the adiabatic isolation relation
are reversibly adiabatically accessible; the equivalence classes are the classes
of states of equal entropy.

"Material isolation with respect to component x' can also be expressed as
an equivalence relation on x Z, where Z are open systems containing
this component, and the equivalence classes are the classes of states of equal
material content for component . The term "component" needs careful
definition if chemical reactions can occur2.

(c) In this paper we presuppose that extensive7 entropy functions S1(z1),
internal energy functions U1(z1), and deformation coordinate functions,
e.g. T'(z1), defined on closed systems, and absolute temperature and pressure
functions T(z1) and P(z1) are available, and that the Gibbs fundamental
equation for closed systems: dU, TdS, — P dJ' has been derived. An
axiomatization of this fundamental part of thermodynamics on a strictly
operational basis is given elsewhere7. A further axiomatic development, which
leads to the Gibbs fundamental equation for open systems, will now be
attempted.

(d) The term "homogeneity of a system" has not so far been defined
formally in axiomatizations2. A definition requires some preparation:
Two states are called "similar" if and only if the pair belongs to all applicable
connection equivalence relations (i.e. if they are in equilibrium under all
possible connections). Thus only states of systems which differ only in extent
can be similar. A "simple system" is a system Z*, whose closed parts Z,,

Z*, i.e. the equivalence classes of equal material content, are completely
specified by [U1, F], [U Y]. A "homogeneous system" is a simple system Z',
such that for closed parts Z,, Z2 Z* the following statement holds:
for pairs of similar states z, z and z', z/

Sz) N S1(z') — U1(z) — Uj(z') — I'(z) — V(z') — M,
S(z) — S{z7)

—
U.(z9 — U(z')

—

V(z) — V.(z')
—

M
where M, and M are the masses of the closed systems Z, and Z3. If we choose
similar states as states of reference for the entropies S. and Si and also similar
states as states of reference for the internal energies (and possibly for the
volumes) then one can write: for all similar states z1 and z:

S1(z1) — U1(z1) — l'(z1) — M1

S3z)
—

U,(z)
—

I'(z)
—

M
This justifies the introduction of specific entropies, internal energies and
volumes for homogeneous systems, and in the case of pure substances,
defined below, the introduction of the molar quantities:
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s0j- (16)

(17)

(18)

An immediate consequence of homogeneity is that the intensities form a
complete set of independent variables for closed parts. If not, then similar
states z and z' would exist, such that Uz) U1(z') or J'(z) V(z'). But
this contradicts

U1(z) T'(z) — — 1 (19
U1(z')

—

J'(z')
— —

(e) A "pure substance" can be defined as a system to which only one
material connection is applicable. An alternative definition can perhaps be as
follows: A "pure substance" is a simple system such that for closed parts:

S = N11s1(P, T) + N21s2(P, T) + ... (20)

U1 = N11u1(P, T) + N21u2(P, T) + ... (21)

V = N1v1(P, T) + N2v2(P, T) + ... (22)

and

N11 + N21 + ... = N1 (23)

It is essential that there exist two or more functions s, s2,. .., and u1, u2,...
and v1, v2,... for certain P, T domains and that S1. U, and V1 are linear
combinations of these functions, which are completely specified by P and T.
The functions are called "molar entropies, energies, volumes of the phases
1,2, . . .", and N11, N21, . . . are called the "molar content of the phases 1,2, ...

(I) Finally the assumption is made that a closed system Z, which is divided
into simple parts Z and Z through a semipermeable wall, has a complete
set of independent variables [U, V1, V2]. The precise status of this assumption
is not yet clear. It is possible to consider this assumption as a definition of
"semipermeable wall". "Semipermeability" has to be understood as non-
permeability with respect to at least one component of the system. The
limiting case is non-permeability with respect to all components; the wall
is then only diathermal. The attraction of this procedure is that the existence
of a semipermeable wall in a given system is decided by means of completely
external criteria: there is no need to look inside the system. The ideal of
phenomenological thermodynamics to consider the system as a black box,
can thus be maintained. The objection that the part volumes V1 and V2
imply a look inside the system can be met: what matters are the volume
differences AV1 and AV2 and these can be measured without knowledge of
the part volume.

The formal introduction of the chemical potential runs as follows:
Consider a system Z, which is divided through a semipermeable wall into
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simple parts Z and Z, the latter being a pure substance OL Let the system
undergo an infinitesimal, quasistatic, isothermal change (dU, dV1, dV2).
Suppose that with this change a change dN in the variable N° of the pure
substance Z is associated. We shall say, again in "black box language",
that Z undergoes a change dN1 = — dN. Then

dU = dU — dU = ... = TdS — PdV1 + dN1.
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