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ABSTRACT

It is pointed out that the usual basic postulate of increase of entropy for an
isolated system, as stated for example by Tisza and Callen, if mathematically
formalized, is expressed as a superadditivity property of entropy. This fact
has two kinds of implications: (a) it allows one to deduce in a very direct and
mathematically clear way stability properties such as C, >0 and Ky >0
and the equivalence of various thermodynamic schemes as expressed for
example by the fact that the ‘minimum’ property of the free energy is a conse-
quence of the ‘maximum’ property of entropy; (b) it makes it possible to
establish a link with foundations research, notably the system developed by
Giles, where superadditivity of entropy appears as a consequence of other
axioms.

INTRODUCTION

Recent developments in the foundations of thermodynamics are of two
kinds. On the one hand!™ one can find attempts to make rigorous the
connection between the possibility of defining entropy and the classical
statements of the second principle. On the other hand>~° the concept of
entropy is taken for granted and some of its properties are assumed in an
axiomatic way, so that attention is turned to deducing rigorous consequences
therefrom: these works are on the line of Gibbs.

In statistical thermodynamics both attitudes have their counterpart.
The second approach has been intensively investigated particularly since
1963, when Ruelle”*® was able to study in a rigorous way the problem of the
so-called ‘thermodynamic limit’ on the basis of the conditions of stability
and strong tempering on the intermolecular potentials. In the technical
treatment of the problem the mathematical property of superadditivity was
considered and the limit thermodynamic functions turned out to have con-
vexity properties®*4 This was just the clue to some improvements in

+ Work supported in part by CNR (Consiglio Nazionale delle Ricerche).
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thermodynamics itself, by the realization that superadditivity has a deep
physical meaning: it expresses formally the basic postulate assumed by
Tisza and Callen!®. This simple property allows one to derive in a very
direct way properties such as continuity and differentiability (almost every-
where) of entropy, stability conditions, extremum properties of thermo-
dynamic potentials and Massieu functions, which had been postulated
independently or derived in-a more complicated or obscure way by those
authors.

The way this is done is presented in the first three sections. In section 4 the
physical meaning of convexity properties is illustrated and the conclusions
are given in section 5.

1. ENTROPY SCHEME

We consider for definiteness and simplicity a system whose equilibrium
states are characterized by the values of three extensive quantities: energy U,
volume V and number of moles N; its thermodynamic properties are
deduced from the entropy S defined through the functional relation

S =%U,V,N) (1)

The assumed properties of & are those of homogeneity, strict monotonicity
in U and superadditivity:

F(AU, AV, AN) = AL(U, V,N) (4 real) 2
FU,LV,N)2 LU, V,N)=U, 2 U, 3)
FU, +U,V,+ VN, + N)) 2 F(U, Vy,Ny) + LUy Vo, Ny) (4)

Equation 2, commonly employed, is a consequence of the postulate of
extensivity of entropy: geometrically it means the & is a ruled surface.
Equation 3 is related to positivity of temperature; it will be used only for the
passage to the energy scheme (§2). Equation 4 is the property of super-
additivity which expresses physically the increasing property of entropy
for isolated systems: for an isolated system of fixed U, V, N the state of
unconstrained equilibrium has an entropy greater than all corresponding
states of constrained equilibrium. The entropy of the state of constrained
equilibrium is represented by the RHS of equation 4, in accordance with
the postulate of extensivity. The postulate of increase of entropy, enunciated
in words in this form also by Tisza and Callen, was formally exploited only
in a way that required consideration of the thermodynamic space of con-
figurations enlarged to include the extensive independent variables of the
simple systems constituting the composite constrained one. As it is formalized
in equation 4, it just gives a functional relation on the function ¥ (U, V, N)
itself. The power of this relation is shown by the following 1mmed1ate conse-
quence: by equations 4 and 2, with A = 4, one has

U +U, V,+V, N, + N
29’( 2 2 7 2

2) > y(Uly VDNI) + y(Ub V29 NZ) (5)
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ie. & is a concave function. By known theorems on convex functions it
follows that!®:

(i) £(U, V, N) is continuoust ;

(ii) right and left first partial derivatives of & always exist; the correspond-
ing differentiated variables are monotonically decreasing (so that they
may have at most jump discontinuities in a denumerable set);

(iii) if & 1s twice differentiable, then one has

0%, y,2) =

0 +a%9’ S s S AN 2 D
Uz TavzY Tan2t T auav ¥ TauaN A T avaNYA (S

In particular, with 0/0U = 1/T, 0%/0V = p/T, and on the basis of
(ili) one can prove the stability conditions:

(0% B ap)
C,,-(TaT)V;O, Ky = _(W >0 (6)

which will, however, be derived in a more direct way in §3.

Properties (i) and (ii) are independently postulated by the quoted authors.
Tisza derives the stability conditions 6 in a less direct way, while other treat-
ments have been criticized!’.

2. ENERGY SCHEME

By equation 3 it is possible to invert the functional relation 1 and obtain

U=%@S,V,N) (N
where % is defined by the identity in S, for any ¥ and N,
SLLUS,V,N),V,N] =8 ®

We then have that % is convex and homogeneous,

u S +S, Vi +V, N;,+ N,
27 2 7 2

UAS, AV, AN) = A%(S, V, N) (10)

Equation 9 follows from equations 5 and 3, by appropriate repeated use
of equation 8

9,[%(& +8, i +V, Ny +N2> V. +V, N, +N2]=s1 + S,
2 2 2 )2 T 2 2
= %{y[%(sla Vl’ Nla)’ I/la Ni] + y[%(SZs VZ’ N2)s V27 Nz]}
. y(%(sl, VN + S, Vo No) Vi + Vo Ny + N2>
2 2 T 2

) HUS,, Vi, Ny) + US,, Vs, N} 9

T Strictly speaking this is true only if the function &, is assumed to be measurable.
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Equation 10 follows from equations 2 and 3, again using equation 8:
FLLUAS, AV, AN), AV, AN] = AS = AL[U(S,V,N), V,N]

= L[AUS, V, N), AV, AN]
From equations 9 and 10 it now follows that % is subadditive
USy + S5, Vi + Vo, Ny + Ny) <US,, Vi, Ny + #(S,, V5, Ny (1)

an inequality that can be physically interpreted in complete analogy to the
case of inequality 4, as expressing the decreasing property of energy in isolated
systems when internal constraints are released.

We note in passing that it would be possible to derive the subadditivity
of % directly from the superadditivity of &, which is essentially the same
procedure used by Gibbs himself, and then get the convexity through
homogeneity. Indeed one has

y[%(sl +S2,I/1 + V29N1 +N2),I/1 + I/Z’Nl +N2] =Sl + S2
= y[%(sv I/la N1)a Vl’Nl] + V[%(Sz, Vz, Nz), V25 Nz]

SLIUS,, Vi, N + US,, VN VL + Vo, Ny + N,y

The first way of proceeding can be extended to. Legendre transform
representations.

3. LEGENDRE TRANSFORM SCHEMES

The Legendre transform g(t) of a convex function f(x) is given!® by

. . o Of\ of\*
gt) = 111f {f(x) — tx}, 1£1f (E) <t< stp (a—x> (12)

where (0f/0x)* is the right (left) derivative. Indeed if f(x) is differentiable
and strictly convex, the infimum is actually a minimum, reached at the

. . of .

unique point X(t) such that —-—i = t, so that equation 12 can be reduced to
=x(t)

the usual definition of the Legendre transform. Definition 12 is more

advantageous, however, because it makes explicit the change of variable and,
in addition, because it is meaningful also for general convex functions that
may have discontinuities in the derivatives and can be linear in some intervals.

Coming now for definiteness to the case of a convex function of two
variables f(x, y),

X1+ X3 1ty
f(—lzz, 12 2)\21ﬂxl,y1)+fx2’y2)}

we may consider the partial Legendre transform
g(t,y) = inf {f(x, y) — 1x}
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for which the following convexity properties are easily established 18,19

t, +t
g( ! 5 2 y) > ety y) + gt2, ¥}

yi +y
g (t, 4‘242) < et yy) + glt, y)}
i.e. Legendre transformation inverts the convexity properties in the trans-

formed variables, while leaving unchanged those in the non-transformed
variables. Indeed one has:

t t
inf {f(x, V) — %—2

x} = %inf{f(xa y) — X+ f(x’y) - t2x}
>3 mf [fx,y) — t;x] + mf [fix, y) — t,x1}

inf{ ( 1 +yz> x} < f<X(t »y1) + X6 y2) vy +Y2> _ Xy + 3 ys)
<32

2 > 2 2
X, yo), y1] — (¢, y,) +

fIX(t, y2), y2] — tX(t, y,)}
= 3{ 1nf [f(x, y,) — tx] + inf [f(x, y,) — tx]}

where

M[%(y, 6) — tX(y. 0] = inf {f(x, y) — tx}

If the function f(x, ) is concave, the Legendre transform is defined by
analogy with equation 12 (using supremum instead of infimum) and the
stated theorem on convexity properties continues to hold. So we have the
general theorem concerning all possible Legendre transforms of energy
(thermodynamic potentials) and entropy (Massieu functions).

Thermodynamic potentials (Massieu functions) are convex (concave) in
the extensive variables and concave (convex) in the intensive ones.

From this convexity theorem, if the functions considered are assumed to
be twice differentiable, stability properties now follow directly, as anticipated
in § 2. Furthermore, observing that Legendre transforms are homogeneous
in the extensive variables, one can derive subadditivity or superadditivity
in these variables, as was done for energy in § 2. These properties too can be
interpreted as expressing extremum properties with respect to states of
constrained equilibrium.

4. PHYSICAL MEANING OF CONVEXITY PROPERTIES

In the same way as superadditivity of & (equation 4) was considered a
formalization of the postulate that the state of unconstrained equilibrium
has entropy greater than all corresponding states of constrained equilibrium,
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it seems quite natural to give also an analogous interpretation of the con-
vexity property (equation 5). This interpretation is that the state of con-
strained equilibrium, in which the constraints are such that all component
systems have equal extensive parameters, has entropy greater than all other
corresponding states of constrained equilibrium.

Of course, the equivalence of these two statements comes about because
of the fact that when all component systems have equal extensive variables
the composite system is homogeneous, so that the LHS of equations 4 and
5 are equal But the physical meaning of the convexity property seems much
deeper and more direct than that of superadditivity. Indeed the property
of convexity compares states in both of which there are constraints, and
asserts that the state of maximum entropy corresponds to equipartition of
extensive parameters (homogeneity). In this sense one might think this to be
a natural starting point for the consideration of thermodynamics of irrever-
sible processes, which act just in the direction of equalizing extensive para-
meters in every region.

Finally we remark that convexity properties in the intensive variables for
Legendre transforms, which are usually not mentioned, can also be inter-
preted in this way, and this stands at variance with superadditivity properties,
which cannot be proved in this case.

5. CONCLUSION

We have pointed out that the basic postulate of increase of entropy, as
expressed by the statement that the state of unconstrained equilibrium of an
isolated system has an entropy greater than all corresponding states of con-
strained equilibrium, if mathematically formalized, is simply expressed as a
superadditivity property of entropy.

This remark has two kind of implications. First, it allows one to deduce in
a very direct and mathematically clear way:

(i) stability properties such as C, = O, K; = 0, where C,, and K are the
specific heat and the isothermal compressibility respectively;

(ii) the equivalence of various thermodynamic schemes as expressed for
example by the fact that the ‘minimum’ property of free energy is a
consequence of the ‘maximum’ property of entropy.

In particular, property (i) is expressed as a concavity property of entropy and
is brought to the general theorem: ‘Thermodynamic potentials (Massieu
functions) are convex (concave) in the extensive parameters and concave
(convex) in the intensive ones’.

Secondly it is possible to establish a link between the basic postulate of
the increase of entropy in the form stated above and certain more funda-
metal discussions of the foundations of thermodynamics, especially that
of Giles3, where superadditivity of entropy for equilibrium states appears as
a consequence of other axioms (Theorem 9.1.3).
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