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ABSTRACT

Recent advances in axiomatic treatments of thermodynamics are surveyed,
by considering the new ideas rather than the mathematical technicalities. It is
shown that the advance has been considerable, and can be summarized by the
remark that the number of primitive concepts needed (for example to arrive
at the notion of entropy) has been steadily decreased. The importance and
significance of certain mathematical notions, notably those of various forms
of order, is emphasized. It is explained in what connections broad continuity
assumptions are convenient and indications are given of how these can be
replaced by more rigorous procedures. Remarks about extensive properties
and about the zeroth law are also included.

1. INTRODUCTION

Among scientists there exists a healthy ambivalence towards axiomatics.
On the one hand there is the doubt whether one can arrive at any new science
by axiomatizing; on the other, no one likes faulty arguments, and it is in
the attempt to eliminate these that one is led in the direction of axiomatization.

Though no professional axiomatizer, I responded favourably to the request
to deal with axiomatics here, because I believe that the progress which has
recently been made in the understanding of the foundations of thermo-
dynamics has in fact advanced scientific understanding. It is the purpose
of this article to remove the thick shell of occasionally very pure mathematics,
utilized in this work, in order to lay bare the essential ideas lying behind it.
Our concern will be with systems which are free of adiabatic partitions and
vacuous spaces, and in which the effects of long range forces, surface tension
etc., are all neglected.

Discussions with Dr C. G. Gould (Cardiff), Dr J. B. Boyling (Leeds) and
W. J. Hornix, and correspondence with Professor R. D. Luce (Pennsylvania)
are gratefully acknowledged.

2. AN EMPIRICAL ENTROPY VIA ORDER RELATIONS

In the axiomatic approach the thermodynamic phase space E of a system
dwindles to a set of points x, y, . . . . €E, and each point becomes a state of the
system only when our rules of interpretation are applied to the abstract
mathematics. If an adiabatic transition is possible from state x to state y,
we shall write xRy. Such relations R can pale into abstract objects of set
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theory, and there be specified merely by their properties. Of these we note six :

(i) Reflexivity: (Vx) (x € E = xRx)

(i) Transitivity: (Vx, y, 2) (x, y, z€ E and xRy and yRz = xRz)
(iii) Symmetry: (Vx, y) (x, ye E and xRy => yRx)
(iv) Antisymmetry: (Vx, y) (x, ye E and xRy and yRx = x = y)
(v) (Strong) connectedness or comparability :

(Vx, y) (x, y € E = either xRy or yRx or both)
(vi) Conditional connectedness: (Vx, y, z)

(x, y, ze E and xRy and xRz = either yRz or zRy or both).

Figure 1. A set of points E = {2,3,4,5,6,7, 8,9, 10} with partial preorder, and also exhibiting
property (iv). Solid arrows mean that xRy. The set may be interpreted by the rule that xRy if
and only if there exists an integer r such that xr = y.
The dashed arrows are needed if conditional connectedness is imposed in addition. For
example, 2R4 and 2R6 then implies 4R6 even though 4r = 6 does not hold for any integer r.

The interpretation of R as adiabatic accessibility between states suggests
that it is safe to impose conditions (i) and (ii) on R to obtain a partial preorder
(or quasiorder). For states arbitrarily numbered from two to ten this type of
order is illustrated in Figure 1 (solid lines). The relation is seen to lack proper-
ties (iii) and (vi) (and therefore also (v)). This is reasonable in the present
interpretation. Thus:

Lack of (iii): (xRy) and (not yRx) can both be true for states of different
entropy, when there is only a one-way adiabatic link.

Lack of (iv): (xRy) and (yRx) can both be true with x # y for distinct states
of the same entropy.

Lack of (v): (xRy) and (yRx) can both fail if x is an equilibrium state not
connected with others by adiabatic processes.

This possibility of states like No. 7 (Figure 1) which are like isolated islands

in a sea of adiabatically iinked states shows that R is still too general for the

simple systems in view here. The effect of conditional connectedness (ref 1,
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axiom 2.1.2 (i), pp 31, 126; axiom A.2.2, p. 193) is to add the dotted links in
Figure 1. Arrows have been affixed to these according to the arbitrary
convention xRy if x > y (which rules out contradictions with transitivity).

(i) + (i) +(v)
= total preorder

in&
class formation,
+(v) ie. antisymmetry (iv)
in C

() + (i) = {i) + (i) + (iv) + (v)
partial preorder =total order inC
in £
class formation,
i.e.antisymmetry (iv) / \\
inC
(i) + (i) +(iv) empirical
= partiat order in C entropy

Figure 2. Types of order.

To remove islands like state 7 one needs the stronger connectedness and
arrives at a total preorder (see Figure 2). This is exactly in accord with the
now usual idea that any pair of states of normal systems are adiabatically
linked. This idea originates from the remarks that there are no physical
processes which involve such adiabatically isolated states (the processes of
class Pl in ref. 2, and in ref. 3, pp 91, 93), and that thermodynamics makes
statements about certain sets of points B in phase space? .

Mutual adiabatic accessibility has the additional property of symmetry
(iii). This condition converts partial preorder to equivalence, and in the
abstract scheme one defines it by

X ~ y<> xRy and yRx

Such a relation divides the set E into so-called equivalence classes. Each
class contains all the states belonging to one and the same entropy. Let the
class containing a certain state x be denoted by C,. Then the properties of
these classes are:

(a) yer=>Cy = C,

(b) y¢C,=C,nC, =0

© E=C,uC,u.....

(d) If (xRy), then (x' € C,,y' € C, = x'Ry’)

Since all points of C, and C, are therefore ordered in the same sense, one
can write

xRy < C,pC,
where p is the ordering relation between the classes. Since R has property
(v), so has p. But unlike R, p has the property (iv). This yields total order of
the set C of equivalence classes (see Figure 2), which are said to form a chain.
A simple interpretation of the relation p is the relation < among real
numbers, which clearly has the properties (i), (ii), (iv) and (v). This suggests
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that (subject to additional assumptions) one can associate a real number
o(C,) with any equivalence class such that

(C.pC,) and (C, # C,) = o(C;) < o(C,) @.1)

This function ¢ has the properties of an empirical entropy, and we have
arrived at it without mention of work, temperature or phase space. Heat has
also not been mentioned, though knowledge of it may (but need not) be
assumed to define an adiabatic linkage of states. The realization that the
introduction of these concepts can be delayed without errors in logic until
after the empirical entropy has been introduced, is one of the results of
recent work on the foundations of thermodynamics. Note that the important
additive property of the entropy cannot necessarily be attributed to the
empirical entropy, which is clearly a weaker concept.

3. PROBLEMS OF CONTINUITY

Current mathematical work on the foundations of thermodynamics tends
to exhibit either an emphasis on algebraic and group theoretical properties
(Approach A) or on topological and analytical concepts (Approach B).
A good combination of them may emerge in due course. A and B will be
illustrated by recent attempts to find quick and intuitive (though unrigorous)
ways of deriving equations of the form d'Q = Ado for an increment of heat.

(A) From order.'One wants to argue’

(A1) Given that for distinct C,, C,, C., if C,pC,, C,pC., . .. then o(C,)
< 0(C,) < o(C>). .. (monotonic empirical entropy)
(A2) There exists a function A in E such that d'Q = Ado (integrating
factor)
The difficulty is that the inferences (2'1) and (A1) are necessarily valid without
additional hypotheses only if the set is denumerable, while (A2) requires a
non-denumerable set.

(B) From Carathéodory’s theorem®. In §9 of his paper, Carathéodory used
accessibility considerations from a given point in phase space to show that
entropy changes in a standard direction in adiabatic processes. This argument

t L
x Z
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,
v
w
/ w,
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/|

Figure 3. Diagram for the argument showing that L contains one point which is in a special
relation to x.
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can be extended. Denote deformation coordinates (volume, magnetic field,
etc.) by V and W and the thermodynamic coordinate (empirical temperature
or internal energy) by t. We seek to get adiabatically from a state x to the
line L defined by V = V,, W = W, (Figure 3). Among the range R of accessible
states on L will be a state which can be reached by quasistatic adiabatic
processes. If it is in the position y’, one can get from y’ to all neighbouring
points on L by adiabatic processes y' — x — y, y' — x — z. By then changing
V and W slightly a whole neighbourhood of y' is seen to be adiabati-
cally accessible from )’, contrary to Carathéodory’s principle. So the state
which is accessible from x by quasistatic adiabatic processes must lie at an
endpoint of R, say at y. On changing I and W, y may be expected to generate
a surface” on which x itself will also lie. Starting with a different state x,
other surfaces are found. From these surfaces one can argue to the existence
of an empirical entropy ¢ labelling these surfaces, and eventually to an
equation d'Q = Ade.

Alternatively, from Kelvin’s principle, a quasistatic adiabatic linkage
between the state x and the line L is possible only for one point y on L. For
if there were two such points y, y' then, choosing ¢ to represent the internal
energy, one can construct a cycle xyy'x which violates Kelvin’s principle.
On the path yy' the energy is changed by a supply of heat Q and in the rest
of the cycle it is changed by the performance of mechanical work W, whence
W = Q. One again arrives at surfaces generated by the single states y as V
and W are changed. If two (quasistatic adiabatic) surfaces intersect one
would again violate Kelvin’s principle, and one would also have a-points
[defined in equation (4.1), below] if the surfaces are smooth enough.

Each of the procedures 4 and B requires continuity assumption, as
pointed out in ref. 8 [see also refs. 9, 10]. To axiomatize these, one has to
borrow results from pure mathematics.

Method A

Chronologically the first result to be invoked?-8-° was the theorem that a
chain C is isomorphic to a subchain of the reals, provided!! C contains a
denumerable subset order-dense in C. This enables one to associate with any
point C, € C a real number a(x) such that for C, # C,

C.pC, implies o(C,) < o(C,)

The natural order of the real numbers thus mirrors the order of the equiva-
lence classes. However, gaps can exist in this representation in the sense that
for all C: such that C,pC. one might have

o(Cz)=za+b>az=oaC,)

where (a, a + b) is a non-zero interval.

One can remove these gaps (and ensure continuity) by imposing on C
additional conditions which can readily be granted for normal thermo-
dynamic systems (C to be continuous, with a denumerable subset dense in C,
and without first or last element). C then becomes similar to the real numbers
in their natural order'2. Thus one can construct an empirical entropy which
is continuous in the following sense: If ¢(C,) — € < o(C,) < o(C,) + €
there exist elements y and z such that C pC,pC, and such that for any x
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satisfying C pC,pC, we have
o(C,) —e <o(C,) <a(C) + €

This second procedure does not appear to have been used explicitly, though
it is very direct, and yields a continuous empirical entropy without using
Carathéodory’s axiom.
Method B.

Let N, denote a neighbourhood of any element x of E. Then a third way of
ensuring continuity derives from this axiom:

[(VN,) (3x')x' € N, and not xRx')], i.e. [x is an ‘i-point”] 3.1

The notion of neighbourhood in the original set E implies the existence of a
topology in E (E becomes a topological space), and continuity means that
closeness in E according to this topology must be linked to the preorder
relation R already defined in E. Thus one requires that any x and y satisfying
xRy and not yRx have neighbourhoods N,, N, such that

x'eN,and y'e N,= x'Ry and not y'Rx'

In addition to this continuity condition for R, first used® in 1962, a separable
topological space E is needed!® '* The separability of E guarantees the
existence of a denumerable subset dense in C. To exclude gaps in C, ie. to
make C dense in itself (and in that sense ‘continuous’) one must assume that
E is connected in the topological sense®

For different equivalence classes to be represented by a surface and for ¢
to be also differentiable, E has to be a locally Euclidean space (a ‘differenti-
able manifold’) and it is sufficient that quasistatic adiabatic transitions be
characterized by a condition XX (x,, x,, . . .)dx; = 0 where the X; are
differentiable functions. Falk and Jung cons1stently avmded the mathematlcal
problem of ensuring continuity (ref. 4, pp 120, 125, 131, 142).

4. THE ‘OLD’ CARATHEODORY APPROACH

The qualification ‘old’ in the title of this section is intended to avoid
confusion between Carathéodory’s own work and its recent developments 4.

The ‘old’ Carathéodory approach shared with the conventional Clausius
treatment a number of demerits* ! : () Though strict axiomatics was not
intended by these authors, it was always prevented by the occurrence of
unstated assumptions which supported stated ‘laws’ or ‘axioms’. (B) The
introduction together of absolute temperature and entropy was a cause of
confusion. Approaches A and B have removed these defects. Only partial
removal of the following additional defects appears to have taken place:
(v) The combination of the inaccessibility axiom and the restriction to simple
system led Carathéodory to peculiar results. One of these is that an empirical
entropy can be found for an ideal gas without any appeal being made at all
to his axiom (3.1). (6) The stipulation that all but one coordinate of the thermo-
dynamic phase space be ‘non-thermodynamic’ meant that a clear distinction
between mechanisms and thermodynamics was not yet part of the formal
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structure. (¢) Insufficient attention is paid to the fact that thermodynamic
functions are defined strictly only for interior points of a phase space.

At the present time, then, these shortcomings of the old Carathéodory
approach are becoming clearer, and the few specialists who are working on
the foundations are leaving this approach in order to develop instead
approaches A and B. It is an interesting thought that this is just the time
when the nature of the old Carathéodory argument, and how it relates to
the Kelvin and Clausius treatments, is becoming clearer'® so as to endow
the old Carathéodory approach with some popularity among a wider group
of scientists.

x
Figure 4. A circuit to relate the principles of Kelvin and Carathéodory.

The key idea here is the straight deduction of Carathéodory’s axiom from
Kelvin’s principle! If Carathéodory’s axiom is not satisfied, there exists for
at least one state x a neighbourhood N, of x such that

(Vx)(x'e N, = xRx'), i.e. x is an a-point. 4.1)

Keeping the deformation coordinates such as volume and magnetic field
fixed, choose a state x"e N, such that the transition from x’ to x can be
performed by adding an amount of heat (Q > 0, say) to the system. One
can then return the system from x to X adiabatically so that work W is
performed by the system. This means that for the cycle (x'xx") Q = W, and
heat energy can be completely converted into work. This violates Kelvin’s
principle. The initial assumptions must therefore have been in error.
Carathéodory’s axiom (3.1) follows from this contradiction.

Suppose now the violation of Carathéodory’s principle, i.e. the existence
~of the a-point x is granted, while one maintains Kelvin’s principle. This feat
can be achieved only if the system is such that there are no states x' e N,
with the required property that the transition from x’ to x can occur with
Q > 0 and fixed deformation coordinates. One must ask: What kind of
systems are these? The answer is simple, the existence of a-points signifies
that these are purely mechanical systems.

These above considerations suggest that Carathéodory’s paper should
no longer be regarded as an attempt at axiomatics. Instead its contribution
is to distinguish between the simpler forms of mechanical and thermal
systems in terms of the topology of the phase space:

Simple mechanical systems: All points are a-points.
Simple thermal systems:  All points are i-points.
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S. METRIC VARIABLES: EXTENSIVITY OR ADDITIVITY

Basic to the notion of length, weight, etc., is the existence of a ‘joining’
operation. The theory of measurement postulates it so that two equal
standard rods joined in a line end to end can be equated (in the sense of
equal lengths) to another rod which is then two units long, It is this operation
which makes measurement possible. From this notion there then emerges
the idea of a metric (i.e. measurable) variable. The quantities measured in
this way are additive in this sense: if g, is measured as a join of n; units of
weight, g, as a join of n, units, then there exists a join (g, q,) of the weights
which will be measured as a join of n, + n, units. Weight is said to be
additive ; alternatively it is said to be extensive.

These notions are deeper than the foundations of thermodynamics, for they
lie at the basis of the theory of measurement itself. One must, therefore,
expect any axiomatic treatment of thermodynamics to lay bare the need for
an operation of joining. While the empirical entropies do not necessarily
add on joining two systems, the absolute entropies do, and one must discover
what axioms make such extensive quantities possible.

To find an extensive energy one may start with a system in ‘energetic
isolation’. Possible transitions are then restricted to occur between equi-
librium states x, y of equal energy. The corresponding relation will still be
denoted by R. In this case xRy = yRx, and this, together with transitivity,
yields an equivalence relation. It enables the states x to be divided into
classes as described in section 2 for adiabatic isolation. However, there is no
obvious way of ordering these classes of constant energy in a way which
corresponds to the ordering of the entropy classes C,. The new idea here is
to consider two equilibrium systems which are joined, energetically isolated
from the surroundings, and allowed to interact. Possible transitions in
which the first part of the system loses energy (say) are

(xla xZ) - (x,la x,Z)a (xlxIZ) g (xll’ X’Z,), (xla x’Z’) - (xll’ x’2” >
The transition x; — x of the first part is here used rather like a measuring
rod, and this induces an ordering of the equivalence classes of the second
part. A metric energy U(x) results if one associates real numbers U(x) with
states x such that

Uxy) — U(xy) = Uxy) — Ulxy) =.......

It is found that the derivation of a metric and additive variable is possible
by this method whenever the variable is subject to a conservation law*. It
follows that, by confining attention to quasistatic adiabatic processes, when
the entropy is conserved, a metric entropy can also be found.

The additivity of the entropy in Giles’s method is more troublesome, no
doubt due to the fact that he tries to describe the theory and the rules of
interpretation in directly experimental terms. The main ideas are:

(i) One uses states x of systems (not necessarily equilibrium states) which
evolve in isolation into other states y: xRy. Adiabatic isolation and
equilibrium come much later, so that the partial preorder R has a
generalized interpretation.
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(1) The joining operation acts on states rather than systems. Being com-
mutative and associative, it is denoted by +. It makes the theory of
partially preordered semigroups relevant.

(iii) The connection between additivity and conservation laws occurs
here through components of content (e.g energy) Q(x) which are
defined by

0(x +y) = 0(x) + Q)
xRy = Q(x) = Q(»)

(iv) The connection between additivity and absolute entropy S(x) is
defined through the properties

Six +y) =Skx) + S@)
xRy = S(x} < S(y)

(v) The axioms are sufficient!” to establish the existence of an absolute
entropy and a family F(Q) of components of content such that

xRy <> S(x) < S(y) and Q(x) = Q(y) for all @ € F(Q).

Within this interesting and elegant framework, it has so far proved difficult
to add simple axioms!” which ensure that the set F(Q) is finite and that its
members are well behaved. Also the existence of metric variables is estab-
lished by somewhat complicated procedures*-!” involving components of
content. Lastly, there are a few difficulties of interpretation and this can be
illustrated by the definition of non-equilibrium state (ref 1, p 83). Using
R to denote a ‘natural process’ x is a non-equilibrium state if a state y exists
such that

xRy, and not (yRx) G.1)

But for any equilibrium state x, as normally understood, one can construct
a state y, e.g. by withdrawing a partition, so as to satisfy (5.1).

An alternative procedure* 13-1® for additivity is to put for the absolute
entropy S(x,) = 0, S(x;) =1 for arbitrary states x, and x,. If one has
adequate assumptions concerning joins of systems 4,, 4,, ... A,, 1.e. about
states (x;, X3, . . . ., X,) Of such systems, one can require S(x;) + S(x,) =
S(x7) + S(x3) if (x4, x,) goes over into (x}, x5) by a quasistatic adiabatic
process. Such an equation can be used to identify one unknown entropy
value. For example, if (x, x) goes over into (x;, x,) in this way, then S(x) = 1.
By continuing in this way additivity of the eniropy can be established.

6. THEORY OF ELEMENTARY INEQUALITIES

Following quasistatic (or reversible) processes and the attendant additivity
of thermodynamic functions (§5), we now return to the general (non-static
or irreversible) processes of §§2-4. The important relations to be considered
are inequalities. We shall denote functions of specified variables by small
letters (x), and variables, when they are not considered as functions, by
corresponding capital letters (X). Sets of variables X,;, X,, . . .. will be
denoted by vector symbols (X). The following properties are noteworthy :
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() Monotonic increase of f with X, :
(X}, X,,... )] P[f(X,, X5, .. )] <= X1pX, 6.1)

where p can stand for ‘greater than’; it can alternatively stand for ‘equal’.
(B) Homogeneity (of degree unity): For all real a # 0

f(aX) = af(X)
(v,) Superadditivity and (y,) subadditivity :
{fX + Y)} R{f(X) + (Y)}
(3,) Concavity and (3,) convexity :
{fEX + Y]} RE [fX) + AV)]}
Here R is 2 for (y,) and (J,) and < for (y,) and (J,).
Assuming (o), it is possible to invert F = (X, X,,...) to yield
X, =x,(F> X5,....)
so that for all X,,... the function x, satisfies
F = f[xy(F, X,,..), X5,:..}

It can now be shown (see Appendix), on putting the function to which a
condition applies in brackets behind it, that

given | B < B(x,) 6.2)
itﬂtaesd 710 = ¥2(x1), T2 = v1(x1) (63)
in (6.1) [ 81(f) <> 8,(x), 8(0) < 8;(xy) (6.4)
given {wm@al(t) 65)
BO |y 5,00 66)

Write S = s(U, V, N) for the entropy, so that X; becomes the internal energy.
The equivalence of certain thermodynamic statements then emerges as
follows:

7109 ¥2(u)
superadditivity of s Given ofs) subadditivity of u
— ————

Given f(s) ﬂ HGiven B(u)
>
5 . (S) Given ofs) 82 (u)
concavity of s convexity of u

One can with the aid of this scheme again arrive at the continuity of the
entropy. Assume from a ‘fourth law’ (ref. 3, p 142) the homogeneity of the
entropy, from a form of the second law the superadditivity of the entropy*®,
and from some form of the third law that the entropy is bounded in the
interval considered. It then follows:

(i) from the above scheme that the entropy s is concave or —s is convex.
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(ii) from the theory of convex functions?® if ¥ and N are fixed then s is
continuous in the interval of U, and has right-hand and left-hand deriva-
tives which are decreasing functions of U.

This set of ideas is of importance in presentations of thermodynamics, to
be called approach C, in which the existence of an entropy is assumed. An
important part of Gibbsian thermodynamics comes under this heading.
The inequalities introduced here are also useful in discussing limiting
properties of statistical mechanical ensembles®.

7. THE ZEROTH LAW

If ug be the thermodynamic variable for a system K, let Fy, (u,, u,) = O be
a relation specifying thermal equilibrium between systems 1 and 2. Then
the zeroth law states that any two of the relations

Fia(upuy) =0, Faz (g, i) =0, Fyy (uz,uy) =0

imply the third (transitivity). It is then inferred that functions ¢ (u)) (j = 1,2, 3)
exist such that thermal equilibrium between systems 1 and 2 may be equi-
valently expressed by
t1(uy) = 15 (uy)

Such a result assumes certain uniqueness properties of thermal equilibrium
(ref. 3, p 11 and ref. 22). Sometimes this caution has not been made explicit,
and perhaps scientists can be excused for not always stating that the existence
of a thermometer is an assumption (ref. 2, p 373; ref. 3, p 117) in an axiomatic
treatment! In fact the following assumption is needed: Suppose that the
values of all but one of the variables u, are specified. Then for each state of
system 2 (for example) there must be a unique value of this remaining
variable for which the systems 1 and 2 are in equilibrium.

As an illustration of alternative mathematical situations, let a
positive numbers, and let

Fij(uyu)) = a;(0;, — 0,')2 + b (¢, — ¢j)2
It is then true that any two of the equilibrium conditions imply the third but

there are now two ‘temperatures’ since the equilibrium condition for systems
1 and 2 is equivalent to

b;;, be

i» Dijs

0, =0, and ¢, = ¢,

This example has been suggested by the specification of a line j by the
position a; of a point on it, together with two angles 0, ¢; in a cartesian
coordinate system. The equilibrium condition F;; = 0 is then the condition
for parallelism of the lines i and j, and transitivity is valid. But a single
‘temperature’ function is clearly not adequate: there are two such functions
0 and ¢. A system with a built-in adiabatic partition can also have two
temperatures.

8. CONCLUSION

Axiomatics does not make new science; this is seen very clearly by the
references which were made by Carathéodory® and Giles' to relativistic
thermodynamics (already in the conventional Planck Einstein form by 1907).
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Table 1. Concepts needed to arrive at an empirical entropy
(/: concept is needed, X: concept is not needed)

Concepts Absolute Adiabatic
I-c[l%t temperature processes and
Approach T equilibrium states
e.g. Clausius (ca.1850) J J J
Carathéodory (1909) X N N
Falk and Jung (1959) b X v
Giles (1964) X X X

The criticism of this formulation was to come in the middle sixties from the
scientists rather than from the axiomatizers. In spite of the limitations of
axiomatics, 1 tried to show that recent foundations research in thermo-
dynamics is nonetheless of importance to scientists, and of intrinsic interest.

Perhaps it will be illuminating to sum up one aspect of this work by
saying that there has been an attempt to decrease the number of basic
concepts needed. This is illustrated in Table 1. The axiomatic schemes
indicated there, though not yet fully satisfactory, represent considerable
advances. That these advances are surprising shows that entropy retains ‘an
untarnished lustre of novelty and an aura of unplumbed depth?3. Perhaps
its study may lead to more gurprises in the future.

It is regretted that space did not permit adequate dlscussmn of otherwise
relevant work in which the existence of entropy is assumed”*

APPENDIX
(See also ref. 19.)
In condition («') substitute as follows:
aF,aX,,..., if f satisfies ((3)
FX,. . -<F+F,X,+X5,...., if f satisfies (y,)
HF + F), %X, + X3),....,iffsatisfies (3,)
In the first case one has from (') and (B)

f{xy(aF, aX,,..),aX,,...] = aF = af [x4(F, X,,.. ), X,,.. ]
= f[ax(F, X5,...),aX,,...]
whence x,(aF, aX,,...) = ax(F, X,,...)

Since one can also argue backwards from the last equation, this yields (6.2).
In the second case one has from (o) and (y,):

f{x, (F' + F", X’ X)X+ X5 ]

= f[x; (F, X5+ fIx, (FL XS R . ¢
\f[xl(F,Xz,...)+xl(F”,Xg,. ) X5+ X5,..]
whence
x,(F+F X5+ X5,..) <x, (F,X5..) + x, (F',X5,..)

This is part of (6.3). The other relations (6.3), (6.4) are obtained similarly.
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Assume next that f satisfies (B) and (y,). Then choosing a = 2,
X + V)] > (X)] + 5] = 3[fX) + f(Y)]

which is part of (6.5), and the remaining relations are established similarly.
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