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1. INTRODUCTION
Phase separation of polymer solutions has long been used as a tool in

fractionating polymers according to molecular weight. In a two-phase
system the distribution of the macromolecules between the phases is governed
to a large extent by their chain length. This is apparent when such systems,
whether or not in equilibrium, are subjected to a liquid—liquid or a liquid—
polymer crystal separation. In the present paper we shall deal only with
liquid—liquid separations, carried out in two-phase systems which are in
equilibrium. The polymers to be considered are homopolymers containing
linear chains of different length.

The art of fractionation fundamentally amounts to finding the conditions
under which the separation according to molecular weight will be as sharp
as possible. The nature of the process is characterized by the tendency of
all species in the polymer to distribute themselves between the two liquid
phases. In an efficient fractionation the conditions must be so chosen that
the amount of undesired components in one of the phases is minimised.
However, no matter how carefully the fractionation is carried out, a
separation into pure components is virtually impossible, and we must accept
that even the purest fraction still contains many components.

This has consequences both in analytical and preparative fractionation
work. The analytical aspect of fractionation, i.e. the determination of the
molecular weight distribution curve from fractionation data, confronts us
with a very old problem, which has been extensively studied'-6. We shall
not go deeply into it here, but turn our attention primarily to the accuracy
attainable. Of course, the analytical and preparative aspects have very
much in common.

In preparative fractionation it is important not only to carry out the
separation in such a way that a fraction with a narrow molecular weight
distribution is obtained, but also to isolate a sufficient amount of this fraction
to permit further investigation. With regard to the latter point we may say
that a fraction size of about one hundred grammes would certainly not be
too large. For preparing such an amount of well-fractionated material large
quantities of initial polymer are needed; the order of magnitude can be
estimated as follows.

Consider an exponential weight distribution:

w(M) = Wr2[F(A+2)]_M' exp (—rM) (1)

* Plenary lecture presented at the 3rd Microsymposium 'Distribution Analysis and
Fractionation of Polymers', held in Prague, Czechoslovakia, during 23—26 September 1968.
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where w(M)
w
11

A

1
b

= the mass of molecules with molecular weight M,
the total mass of polymer,

= the gamma function,= (2—b)/(b—l),= (A+l)/M,= MW/Mn,

= $Mw(M)dM/W = the weight—average molecular weight,

M = W/M'w(M) dM = thenumber—average molecular weight.

The exponential function is a maximum at M = M.
Denoting the width of the distribution by b (= Mw/Mn), one might ask

what will be the relation between the maximum possible yield of a fraction
of a given M and its b-value. Obviously, one obtains the maximum fraction
size at a given b-value if the number average molecular weight equals that
of the original polymer (assuming an exponential fraction distribution).
Then, we have the situation shown in Figure 1.
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Figure 1. Exponential fraction distributions (b values indicated) allowing maximum yield
from an exponential initial distribution (b = Mw/Mn 2; Mn = 105).

Figures 2 and 3 show the dependence on the b-value of the fraction of the
yield of fraction and the amount of initial polymer needed to obtain a
100 g fraction. As would be expected, the yield decreases considerably in
the b-range of interest. The size of the polymer to be fractionated amounts
to several kilogrammes.

In practical separation work, the maximum yield (coincident maxima of
the distributions) is not readily obtained. On the other hand, as the initial
M value decreases, the situation may become less unfavourable but, if we
move away from the maximum or have a wider or different initial distribution
or a higher M value, the yield may still be smaller than that in the present
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example. Hence, the preparation of sufficient quantities of fractions with
really narrow distributions will necessarily involve fractionation of several
kilogrammes of polymer.

This requirement rules out all current fractionation methods except the
classical precipitation and extraction techniques. Their principles are
well-known'-5; in fractional precipitation one tries to increase the quantity of
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Figure 2. Maximum yield of fraction from an initial
exponential distribution (b = 2; M = 105).
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Figure 3. Amount of initial polymer (exponential
distribution, b = 2, M = 105) needed for a

100 gram fraction at maximum yield.
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the high-molecular-weight components in the concentrated phase, whilst
decreasing the amount of low-molecular-weight constituents in this phase
as much as possible. Conversely, with extraction one separates the low-
molecular-weight components and tries to avoid high-molecular-weight
contamination.

Before proceeding with a discussion of methods suited for practical large-
scale separation work, it may be instructive to estimate whether the experi-
mental efforts involved will bring us anywhere near the ultimate aim of
fractionation: separation of pure components. Inspection of Figure 1 reveals
that, even at b = 1'OOI, the half-width of the fraction distribution is still
7000, whereas the width at the base of the distribution is about 20000.
With a monomer molecular weight equal to 100, this means that there are
about 200 components, more than 70 of which are present in appreciable
amounts. At b = 105, which can be considered a very satisfactory frac-
tionation result, these figures are about 1600 and 500, respectively.

2. LIQUID-LIQUID PHASE RELATIONSHIPS IN
NON-BINARY MIXTURES

Graphical representation of two-liquid-phase relationships in binary
systems does not present any problems. The number of degrees of freedom
is two, and a planar diagram is adequate. The limit of visualizability is
reached as soon as one more component is added, and multicomponent
mixtures, like polymer solutions, compel us to turn to graphical representa-
tions, which may be ambiguous.

A consideration of ternary solutions containing a solvent and two macro-
molecular homologues brings out most of the deviations from truly binary
phase diagrams, as are also to be expected with multicomponent systems.
Very useful ternary diagrams have been calculated by Tompa7, who used
Flory8'9 and Huggins'°'12 free enthalpy of mixing function (zG) for the
purpose.

The free enthalpy (Gibbs free energy) governs the equilibrium behaviour
of the system and it is therefore important to make an appropriate choice
of the zXC function. The expression derived by Flory and Huggins on the
basis of the lattice theory might be considered too rough an approximation.
More refined functions are indeed available'316. However, the Fiory—
Huggins expression has been found suitable for describing phase relationships
in a qualitative7'9 and, occasionally, also in a quantitative way'722. It offers
a considerable advantage over the more refined functions in that it has a
relatively simple form. For quantitative use, it may be necessary to assume
the interaction parameter to be concentration-dependent.

Flory and Huggins' iG function reads:

LG/RT = ç6o in o+imr' ln c6+gc6oc!
where G = the free enthalpy of mixing per mole of lattice sites,

o = the volume fraction of the solvent,
= the volume fraction of macromolecular species i,
= = the whole polymer volume fraction,
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= the chain length of species i, expressed as the number of lattice
sites,

g = the interaction parameter7'9"2
The other symbols have the usual meaning.

Equilibrium conditions can be derived from Eq. (2) by equating the
chemical potentials of the components in the two phases. This leads to
a number of equations equal to the number of components. For the
numerical solution of these equations the reader is referred to the relevant
literature'7"8'23-25.

The miscibility gaps thus calculated by means of Eq. (2) have the
asymmetric shape which, as found from experiment, is typical of polymer

Figure 4. Ternary binodals for different temperatures. Critical points are denoted by circles.
Tie lines are drawn in for T2 and T3. The chain length of P2 is larger than that of its

homologue P1.

solutions7-'2. A schematic illustration of Tompa's ternary examples is given
in Figure 4, which shows the development of the immiscibility area upon a
change in temperature. The two polymer homologues F, and P2 differ in
molecular weight (M2> Mi). Compositions of phases coexisting at a given
temperature (e.g. A2 and B2 at T2) are connected by tie lines. The latter
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tend to shorten as the critical, cir consolute point, where the two phases
become identical, is approached.

All solutions of a mixture of P1 and P2, say X, in the single solvent S, are
represented by points on SX. The extreme temperature at which a solution
of X in S can show phase separation is T2, and it should be noted that the
system A2 at this precipitation threshold—as it was called by Tompa26—is
not in the consolute state, but on the contrary, coexists with B2. This
statement is valid irrespective of whether T1 > 7'5or T5 > T1.

The isothermal locus of the coexisting or conjugate phases is called
binodal. If the binodals for the various temperatures are put together in a
three-dimensional diagram, we obtain Figure 5. This figure reveals the

Figure 5. Miscibility gap in solutions of a binary polymer (components P1 and P2) in a
single solvent S. AA2C5B: quasi-binary section (cloud-point curve); A2: precipitation

threshold; GC5C': locus of critical points.

nature of the graph obtained by plotting the data of a series of cloud-point
measurements on a planar diagram. Miscibility gaps in polymer solutions
can often be measured conveniently by changing the temperature of homo-
geneous solutions of various concentrations, and noting the temperature at
which demixing sets in (cloud-point). Plotting the observed cloud points
against polymer concentration yields the cloud-point curve, which, in
Figure 5, is identical to the quasi-binary section AA2C5B. In fact, if X
represents the investigated polymer, the plane of our graph is TSX.
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Unlike the behaviour observed in binary systems, such as SP2, the cloud
point curve AA2C5B does not represent coexisting phases, and its extreme
(the precipitation threshold) is not a consolute point. The latter is indeed
located on the curve, but must be sought at a higher polymer concentration.
This can be conclusively proved27'28.

Considering a system within the miscibility gap (Q), we find the two
conjugate phases Q' and Q" both outside the plane TSX. If we plot the
overall polymer concentrations of the two phases, we actually project Q'
and Q" onto TSX. Doing so for different temperatures, we obtain a co-
existence curve which comprises two branches, one referring to the dilute,
the other to the polymer-rich phase. The two branches are not connected,
unless the overall polymer concentration of system Q happens to equal the
critical concentration corresponding to C517,19,20.

The compositions of the phases coexisting with cloud-point systems (e.g.
A, A2, B and K, B2, L, resp.) can also be projected onto TSX. The locus of
the points thus obtained is the coexistence curve of the cloud-point curve.
The former has been called the shadow curve, because it cannot be measured
in a direct way'9. As can be seen in Figure 5 an increase of the overall
concentration from A to B causes the two branches of the coexistence curve
to move closer together. Instead of the single binodal in a truly binary
system, we now have coexistence curves the location of which depends on
the overall concentration. They are confined to the region between the
cloud-point and the shadow curves'9.

All these different curves eventually coincide if we move X to P2; this
yields a binary mixture, in which, in conformity with the phase rule, the
critical point is found at the extreme of the binodal. Upon shifting X, i.e.
upon a change of the polymer composition, all phase relationships change,
and the shape of the quasi-binary phase diagram must therefore be expected
to vary with the polymer composition.

All the features referred to above are reflected in the phase behaviour of
polymer solutions containing many more than three components. Figure 6
shows some examples calculated on the basis of Eq. (2) with g independent
of the polymer concentration ç. Because the g( T) relation is left undefined,
g instead of T appears on the ordinate.

For the purpose of calculation the molecular weight distribution of the
polymer must be chosen. Distribution shapes differing from the exponential
function (1) can be constructed either by suitable addition of two or more
exponential functions'7"8, or by using, e.g. the logarithmic normal function:

w(M) = WbM2lrM exp [—fl2 ln2 (i1/tfM0)] (3)

where 2 = 2 in b,
M0 = Mb"5

The distribution functions used for Figure 6, and some others to be employed
later, are shown in Figure 7. Their characteristics are listed in Table 1.

The most striking feature of Figure 6 is the variation of the shape of the
phase diagram with polymer composition. All three distributions are
identical with respect to M and M, but M differs. The skewness of the
distribution curve increases with M (Figure 7b) and so does the distortion
of the phase diagram. All qualitative aspects observed in Figures 4 and 5 are
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Figure 6. Planar phase diagrams for three molecular weight distributions. M = 13l7 x j03;
b = 5. Cloud-point curve: —; shadow curve: — —. Coexistence curves for

indicated values of overall polymer volume fraction : — — —; critical point: 0.
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Figure 7. Some of the distribution functions used in the calculation of phase separations and
fractionations.

also noted here. The change in M is one of the many multicomponent
analogues of a shift of X on the P1P2 axis in Figures 4 and 5.

Experimental evidence demonstrates that the phenomena discussed here
are real. Rehage et al.29'3° measured phase relationships in solutions of a
sample of polystyrene in cyclohexane. Figure 8, which is based on their
results, brings out the qualitative confirmation. Further experimental data
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Table 1. Characteristics of some of the model distribution functions

Function Type M. 10-s MW/Mn MZJMW

wi
W2

log normal function
log normal function

1317
2634

10
2

10
2

W5 log normal function 1317 2 2
w6 sum of 2 log normal functions 1317 10 1 64
W7
wio

exponential function
sum of 2 exponential functions

1317
1317

2
5

15
2

W12 sum of 2 exponential functions 1317 5 3
w14 sum of 2 exponential functions 1317 5 7
W15
W16

exponential function
sum of 2 exponential functions

1256
1250

1 13
1 25

1115
112

w17 sum of 2 exponential functions 125 1 25 112

Polystyrene concentration, by weight

Figure 8. Quasi-binary phase diagram for solutions of a sample of polystyrene in cyclohexane.
Data from Rehage et al.29'2° Cloud-point curve: ; coexistence curves at 2 (0)' 6
(El), 10 (A), 15 (7) and 20 ( per cent overall concentration (per cent by weight):

shadow curve: — — —; critical point: .

have been collected on the system polyethylene—diphenylether'7'19; Figure 9
shows some results. In Figure 10 it is seen that the actual phase behaviour
may follow the calculated trends in detail. The calculated and measured
dilute phase branches of the coexistence curves refer to quite comparable
distributions and concentrations.

If the phase diagram and, hence, the compositions of the conjugate phases
are so highly dependent on the polymer composition (molecular weight
distribution), we must also expect that the efficiency of fractionation will be
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Figure 9. Quasi-binary phase diagrams for two samples of polyethylene dissolved in diphenyl-
ether. The characteristics of the samples are given in Table 2. Cloud-point curve:
coexistence curves for various whole polymer volume fractions: •; shadow curve:

—; critical point: •. (a): sample L 30-0-7: 4) = 00309 (0), 00612 (fl) and
00734 (7). (b): sample L 30-5-1: 4) =00563 (V) 00733 (0), 00854 (J); 00973 (A,

critical concentration) and 0.1445 (LI).

influenced by the composition of the polymer to be fractionated. Conse-
quently, it cannot be taken for granted that, under otherwise comparable
conditions, polymer fractionation will always lead to the same efficiency of
fractionation. This is illustrated in Figure 11 where calculated and measured
average molecular weights are compared. Again, we note a high degree of
qualitative agreement. Judged by the molecular weight averages, the
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Figure 10. Calculated and measured dilute phase branches of the coexistence curve for
relatively narrow (w5; L 30—7—6) and wide (Wi; L 30—0—7) distributions. Characteristics in

Tables I and 2.

Table 2. Characteristics of polyethylene samples

Sample M. l0 M. lO M. l0 MW/Mn MZ/MW

L30-0-7 12 1•53 9 13
L30-7-6 92 l4 3.3 15
L 30-5-1 86 055 3 64

6
24
55

fractionation result at a given fraction size depends to a large extent on the
initial polymer distribution.

The characteristics of the hypothetical distributions and those of the
Marlex-type polyethylene samples used are collected in Tables 1 and 2.
The parameter x stands for the mass of the fraction in the polymer-rich
phase relative to that of the whole polymer. The g values in the experimental
examples (Figure 10) have been derived from the g(T) function for the
system polyethylene-diphenyl-ether17"8.

In quasi-binary systems, phase separation must be effected by changing
the temperature. This is not the customary approach in which isothermal
conditions are maintained and a non-solvent is added. Calculations on
quasi-binary systems are however simpler and, moreover, lead to quite
analogous conclusions. Some comparisons will be made in Section 3.
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Fi&ure 11 a and b. Calculated and measured average molecular weights of the fractions in
dilute (single prime) and concentrated (double prime) phases. The abcissa shows the relative

size x of the fraction in the concentrated phase.
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3. PREPARATIVE FRACTIONATION
a. Precipitation and extraction

It is an established view in fractionation practice that efficient separation
is most likely to take place in very dilute solution. A condition is that the
dilute phase has a large volume compared with that of the polymer-rich
phase'-3. This involves the fraction size x being small. Obviously, we 'refer
here to fractional precipitation.

Looking at a ternary diagram, one can easily see that fulfilment of these
conditions indeed guarantees the best fraction obtainable in the existing
circumstances. Inspection of Figure 12 discloses that the composition of the

P1

Figure 12. Fractionation of a binary polymer in a quasi-binary system.

fraction in the concentrated phase (X") shifts towards the pure component
P2 if the overall concentration decreases (X and X at and ç6). At the
same time, the ratio V'/V" of the dilute and concentrated phases rises, and
x decreases. The best fraction obtainable at the temperature for which
Figure 12 is valid is X; the corresponding çL value is q, the threshold
concentration. Here, V'/V" = co and x 0.

It is not evident whether or not this simple line of reasoning can be
followed also with regard to multicomponent polymer solutions. We shall
therefore again refer to numerical calculations and look for the conditions
under which a precipitation fraction has the lowest possible M/M value.
The parameters of experimental interest are the overall polymer concentra-
tion and the fraction size x, and it will be interesting to know how M/M
(later referred to by b) for chosen initial distributions depends on x at
given ç.
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Figure 13. Relation between b-value and relative size x of the fraction for various indicated
values of the overall polymer volume fraction q. Drawn curves: fraction in concentrated

phase; dashed curves: fraction in dilute phase.
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Figure 13 shows this dependence for four different initial distributions and
reveals that the fractionation efficiency at given and x indeed depends on
the composition of the original material. The striking feature of the (drawn)
b"(x) curves is that, although they do show a minimum, this is not located
at x = 0. This feature is quite general; it was found for all distribution
functions investigated so far'7"8'20'31. Bohdánecky, who used a different
calculation procedure, also points to the occurrence of minima in b"(x)
curves32.

The fractionation rule mentioned above is reflected in the decrease of b"
with q at constant x. However, a decrease of x to the usually recommended
low value may lead to a most unwanted result. There exist initial distribu-
tions for which this procedure would yield a fraction having a larger b-value
than the original material. Both in preparative and analytical fractionation
this must be regarded as a most unattractive aspect of the precipitation
procedure.

The latter phenomenon can be explained by means of the well-known
fractionation equation9:

w"(M) = w(M)/[l+rexp (—am)] (4)

where w"(M) = the differential weight distribution of the fraction in the
concentrated phase,

w(M) the differential weight distribution of the initial polymer,
r = V'/V" = the volume ratio of dilute and concentrated

phases,
m = the relative chain length of molecules with molecular

weight M,
a = a separation parameter9, depending on g and on the

polymer concentrations in the two phases.
The denominator tends to unity at very high M and is maximum at low M.
Hence, if w (M) were constant, w" (M) would decrease with M. If, mean-
while, w(M) should rise steeply, this would offset the decrease of w"(M),
and eventually lead to bimodality of w"(M). Anyhow, the asymmetry of
w(M) is likely to cause a relative accumulation of low-molecular weight
material in w"(M), thereby lowering M. At the high-molecular weight end
w"(M) becomes nearly identical to w(M) so that w(M) itself determines

to a high degree. This accounts for the high value of b" (= M/M),
which in some cases may even exceed b.

Figure 13 also suggests a method of fractionation that seems to hold out
much greater promise. At high x values all b'(x) curves (denoting the b
value of the dilute-phase fraction as a function of x) drop to relatively low
values. This phenomenon is not so common as the minimum in b"(x), and
the sharpening of the fraction distribution depends to a large extent on the
initial distribution'7'18'20'31. This can be seen from the curve for function w1Q
in Figure 13. However, the b' (x) function shows little dependence on the
polymer concentration and this means a considerable advantage in large-
scale preparative fractionation. Whereas in fractional precipitation the
concentration must be kept low, this variant of fractionation by extraction
allows it to be taken as high as handling of the solution allows. Then, large
amounts of initial material can be manipulated without the need for exces-
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Figure 14. Width of the fraction distribution as a function of the fraction size x. Circles and
squares denote 1 per cent and 2 per cent initial polymer concentrations, respectively. Closed
symbols: concentrated phase; open symbols: dilute phase. Polymer samples: Marlex-type

polyethylene (see Table 2); solvent: diphenylether.
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sive solution volumes. In fact, the polyethylene samples L30-7-6 and L30-5-l
(Table 2) were prepared in this way, starting from 1 kg of sample L30-O-7.

Scott33 already noted that extraction might yield more favourable results
than precipitation. However, in normal extraction procedures, in which the
bulk polymer is successively extracted with liquids of increasing solvent
power, equilibrium can hardly be established. This tends to broaden the

20 (b) L30-7-6

C5
16 -

12-
0 02 04 06 06 10

x

(c)L30-5-l
14
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S
do -

S

S

6

2-

14

8

2

02 04 06 08

fraction distributions. To overcome this practical drawback, Staverman and
Overbeek34 suggested the precipitation of most of the polymer as a concen-
trated phase, and the isolation of the material remaining in solution. This
variant of the extraction method is actually the procedure discussed above.

The effects described so far can be verified experimentally'7"8, as is
shown in Figure 14.
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b. Influence of the free enthalpy of mixing function
All preceding considerations were derived from calculations based on

Eq. (2), with g independent of . Before formulating a general conclusion
about preparative fractionation, we shall first investigate the effect of ZIG
functions deviating from Eq. (2) which has been used so far. There may
be two causes of such deviations:
(i) in quasi-binary systems g is generally found to depend on
(ii) most fractionations reported in literature were not carried out in

quasi-binary, but in quasi-ternary solutions, which consist of a solvent,
a precipitant and the polymer.

(i) Concentration-dependent interaction parameter
The numerical fractionation calculations

a concentration-dependent g. We did not

-
+0•1•

24682468 2
x

Figure 15. Width of the fraction distribution as a function of the fraction size. Concentration-
dependent interaction parameter, values of gi (= g/&6) are indicated. Frac4ion in con-
centrated phase: ; in dilute phase: — — — —. Initial distributions: sums of two

exponential functions.
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because the choice of the g(q) function involves a certain arbitrariness. For
the present purpose we chose g linearly dependent on

g = go+giq (5)

and restricted the g(T) function to go.
The b(x) graphs for two values of gi are shown in Figure 15, which

demonstrates that the overall picture is preserved but for a shift of the curves.
With g > 0, we get a better fractionation efficiency than with gi = 0. A
negative value of gi has an unfavourable effect.

P1

Figure 16. Fractionation at varying concentration dependence of the interaction parameter
g (g = go+gi).

This can be understood by looking at a ternary diagram (Figure 16). Under
comparable conditions (such values of go that we have equal and equal x)
we get a wider miscibility gap with gi > 0 than with gi = 0, and a narrower
one with gi <0. This means that the fraction in the concentrated phase X"
will be nearest to the pure component P2 if gi > 0. Figure 16 suggests that a
negative gi also has an unfavourable effect on the width of the fraction in
the dilute phase. This is in agreement with Figure 15.

However, we have seen that not too much significance should be attached
to these ternary graphs; therefore the conclusions drawn from them should
be verified against truly multicomponent solutions. This has been done in
Figure 17, which shows the relative location of some coexistence curves if g
depends on !. The immiscibility region is widest with gi > 0.
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Figura 17. Coexisting phase concentrations qY and j/' at various indicated values of gi
(g = go+gi4) and various overall polymer concentrations q!. Initial distribution: sum of

two exponential functions; M = l0; Mw/Mn = 10; MJM = 10.

(ii) So1vent-non-solvent—po1ymer
Calculation of phase equilibria in quasi-ternary solutions calls for a

function which is more complicated than Eq. (2). Now allowance must be
made at least for the three binary interactions, which can be done by
extending Eq. (2)7'9. If we assume that both the solvent and the non-solvent
molecules have the size of a lattice site, we get:

LG/RT = o in o+c6imi' in qi+b in (6)

where /i is the volume fraction of the non-solvent and got, go and g12 denote
the solvent—polymer, solvent—non-solvent and non-solvent—polymer inter-
action parameters, respectively.

Many combinations of the g values are conceivable. For the moment, we
shall consider only one set of values to form an idea as to whether the
overall shape of the b (x) curves derived so far is valid also in the case of
precipitation by a non-solvent. Figure 18 demonstrates that this question can
be answered in the affirmative. The set of g values used for calculating the
quasi-ternary b(x) curves is: gol = 0; go2 = 0; g12 = I. This set represents
a very good solvent for the polymer and a readily miscible solvent—non-solvent
pair.

As can be seen in Figures 15 and 18, the behaviour revealed by Figure 13
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,q-tern
q -bin'

'bifl4/
Figure 18. Comparison of the fractionation efficiency in quasi-binary (poor solvent-polymer)
and quasi-ternary (solvent—precipitant—polymer) systems. Values of the interaction para-
meters: gol 0, g02 = 0, gi = 1. Overall polymer volume fraction: 001. Fraction in

concentrated phase: ; in dilute phase: — — — —.

50 100 150
M x 10

Figure 19. Narrow distribution (main peak w15; M = 1256 x 105, b = 113), contaminated
with a small amount of low molecular weight material (total two-peaked di3tribution;

w16; M,, = 1250x1O; b = 1.25).
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can be regarded as quite general, whatever the nature of the system in
which the fractionation takes place.

c. Influence of initial distribution
In the preceding examples the initial distributions, whether unimodal or

showing two maxima, invariably have a positive skewness. Although one
would intuitively expect polymer distributions to have such shapes, it is
nevertheless instructive to examine what might be the effect of other shapes
on the fractionation efficiency.



MULTICOMPONENT POLYMER SOLUTIONS

M M/M
twopeaksl25x io 125 24 two peaks M=125x10
onepeak 1256x106 113 M/M=125

22- 22-

- 20-

18

16 - / 16/ // /
14- / 14 '

two peaks,w15 12 -
——

10 ______________
0 02 04 06 08 10 0 02 04 06 08 10

x

(a) (b)

Figure 20. Fractionation efficiency with the contaminated distribution in Figure 19. Fraction
in concentrated phase: —; in dilute phase:—————; = 001.

02 0 06 08
x

Molecular weight distribution of the initial polystyrene sample
(0 P C analysis)

EIE

Figure 21. Fractionation efficiency for a mixture of two narrow-distribution polystyrene
samples. Initial concentration: 1 per cent by weight; solvent: cyclohexane. Fraction in

concentrated phase: ; in dilute phase: — — — —.
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As a first example let us consider a narrow distribution contaminated
with a small amount of low-molecular weight polymer (Figure 19). The
corresponding b (x) curves are illustrated in Figure 20, which shows a
behaviour rather different from that observed before. Over practically the
whole x range, the fraction in the dilute phase now has a wider distribution
than the original polymer.

For the explanation we again refer to Eq. (4). As long as x is smaller than
O995, the dilute phase will contain contributions from both peaks. This
gives rise to relatively large b' values which will increase with x. When the
x value of 0995 is exceeded the dilute phase will finally contain only

x

Figure 22. Fractionation efficiency for a negatively skewed initial distribution. Fraction in
concentrated phase: —; in dilute phase: — — —.
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constituents from the low-peak material and, consequently, b' must drop
sharply. At a lower molecular weight level, we observe the same phenomenon
(Figure 20b).

Although, strictly speaking, the Staverman-Overbeek extraction method
would still yield a good fraction, this will in the present case only be so at
impractically high values of x. Indiscriminate application of the Staverman—
Overbeek extraction procedure would then have an undesired effect, in
that it would lead to a fraction having a wider distribution than the initial
polymer.

This conclusion needs experimental verification, which is supplied by
Figure 21. The effect, although clearly visible, is less pronounced than in
the calculated examples because the two peaks are closer together and do
not differ so much in magnitude.

The second example is a logical continuation of the preceding one. We
now consider an initial distribution with a negative skewness. Kubin
developed a very useful continuous distribution function which covers this
case35. His function is a generalized exponential distribution having three
adjustable parameters, one of which is a power exponent of M in the
exponential. Unfortunately, this function cannot be introduced into our
current computer programme, and we used the, admittedly crude, approxi-
mation of a set of functions.

Figure 22 demonstrates that, in this case, the behaviour is identical with
that for the previous, contaminated distribution and here also Staverman—
Overbeek extraction, if used indiscriminately, leads to undesired results.

d. Preparation of fractions
The material assembled indicates that the fractionation efficiency depends

greatly on the initial distribution. Since the latter is not as a rule known, we
must look for a phenomenon appearing at all polymer compositions and
concentrations. Inspection of the data reveals that the width of the fraction
in the concentrated phase at large values of x is such a general characteristic,
We always note a sharp drop of the b"(x) curve in that region of x values.
Hence, the safest procedure in the preparation of fractions from, a priori,
unknown distributions would seem to be repeated extraction of the con-
centrated phase at high x values. If the initial distribution has a positive
skewness, we can just as well use the extracted material (Staverman—
Overbeek extraction); if it has not, the extracted fractions will be useless.

This procedure of repeated extraction, which can be applied to solutions
of comparatively high concentrations, will, by its very nature and also
because of the large x values involved, be highly suitable for large-scale use.
There is a limit to its applicability, however, because the drop of b"(x) at
high x values decreases with the width of the original distribution. Figure 23
illustrates this rather obvious effect. If b decreases, the b" (x) curves tend to
level out and, below b = l1, the effect of further extractions cannot be
expected to be anything but small. Beyond this point we depend on other
methods.

If the polymer is capable of crystallizing, fractional crystallization would
be a powerful means of obtaining sharper distributions3638. For non-
crystallisable polymers we have to rely on other means. A possible solution
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Logarithmic normal: Exponent al: Exponenti at:
M=105 M105 M= 10

1.01 I
0 02 04 06 08 10

x

Figure 23. Influence of the width of the initial distribution (b-values are indicated) on the
efficiency of fractionation at = 001. Fraction in concentrated phase: ; in dilute

phase: — — —.

is offered by the counter-current extraction technique proposed by Englert
and Tompa39.

It might also be possible to conclude the repeated extraction by removing
the high molecular weight tail as a result of a precipitation step at low x.
If, however, in the course of the extraction process a negatively skewed
distribution has developed in the product, such a final step would only have
an undesired effect. Figure 22 illustrates this, since at low x we have b' > b.
Occurrence of a negatively skewed distribution during repeated extraction
is by no means improbable, as is schematically shown in Figure 24.

Figure 24. Possible course of repeated extraction of a positively skewed initial distribution.

4. THE ANALYTICAL PROBLEM
a. Analysis of fractionation data

In attempts to determine the molecular weight distribution, the polymer
may be separated into a number of fractions. For this purpose several
fractionation schemes have been devised'5, all of which share the difficulty
that the initial distribution must be reconstructed from the data available.
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We shall not go into a detailed discussion of the various schemes and
evaluation methods1 7,18,25,40, but restrict ourselves to giving some repre-
sentative examples.

One possible way of accounting for the distribution present in every
fraction is by making use of functions like Eqs. (1) and (3). The distribution
parameters appropriate for each fraction are calculated from its average
molecular weights, M or M or both, as in the case of exponential and
logarithmic normal functions. Having done this for all fractions, the indivi-
dual functions can be added. This yields curves, which may be considered
representative of the initial polymer.

In theoretical fractionation where the initial distribution is known, we

Lfl
CD
>c

CD

Figure 25. Successive fractionations of function wi ( ). Logarithmic normal and
exponential fraction distributions: — and —— — —.

can check the resulting curves against the original function chosen. Com-
pared with the experimental approach, where such a comparison can be
made in rare cases only, this gives a distinct advantage.

Figures 25 and 26 show the results of calculated fractionations of the
initial distributions wj and w6 (Table 1). These refer to fractionation by
successive extraction and precipitation of various numbers of fractions at
two different concentrations. It can be seen from these figures that an
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6

(c) Extraction at p0O1 and 0001
(10 fractions)

tt,

x

2

M

6

10 i6

(d)Precipitation at cp—O01 and 0001
(10 fractions)

2

2

0

M
Figure 26. Successive fractionations of function W6 (— ). Logarithmic normal and

exponntia1 fraction distributions: and — — — —.
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accurate approximation of the original distribution cannot easily be obtained
by fractionation. This is due to insufficient correspondence between actual
fraction distributions and their representations17"8. A drawback of the
evaluation method used here is that extra peaks may be introduced, which
are not present in the original curve, whereas, on the other hand some
secondary peaks may be overlooked. Hence, reliable detailed information
cannot be derived from fractionation methods. The only procedure which
appears to lead to a meaningful result is successive extraction into a large
number of fractions.

These conclusions refer to calculated examples in which experimental
errors do not play a role. In addition to the considerable experimental effort
involved in a multi-step extraction, there is the notorious loss of material
during fractionation, which detracts from the reliability of the result. In
view of all this, it seems questionable whether the unreliable results will ever
justify the efforts devoted to analytical fractionation.

Figure 27. Successive fractionations into 10 fractions of a negatively skewed distribution
( = 0.01). Logarithmic normal and exponential fraction distributions: and

— — — —-. a: precipitation; b: extraction.

A further example is shown in Figure 27, where the negatively skewed set
of functions (see Figure 22) is represented by a step curve, to facilitate
comparison with the results of the fraction data analysis. With successive
precipitation, the negative skewness disappears altogether. Admittedly, the
representation of the fraction distributions by positively skewed functions
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[(1) and (3)] cannot but be rather inappropriate, but given the present
result, there is no way of knowing this.

It is generally believed that fractionation, whether preparative or analytical,
should be carried out in dilute solution. We have seen, however, that
extraction at relatively high concentrations may yield quite satisfactory
fractions. It has been shown elsewhere'7"8'41 that this holds even at con-
centrations higher than the critical. Figure 28 shows an example of the

1•0

in concentrated

bimodal distribution w6 (Table 1, Figure 7). At 4) = 005 (4) = 0.03571),
the b' (x) curve shows a branch tending down to relatively small b' values.
Complete fractionation by extraction under these conditions yields the
result shown in Figure 29. The reconstruction of w6 is not very satisfactory,
though not much worse than some of the examples in Figure 26. A better
result is obtained with function w (Figure 29), and the narrower initial
distributions w5 and W7 can be quite reasonably reconstructed (Figure 30).

b. Alternative approach
In Section 1 arguments were advanced suggesting that liquid—liquid phase

relationships are to a large extent determined by the molecular weight
distribution. Should this be so, the question arises whether phase relations
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Figure 28. Fractionation efficiency for bimodal distribution W8. Fraction
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6

Figure 29. Supercritical successive extraction of functions Wi and w6 ( ). Logarithmic
normal and exponential fraction distributions: and — — — —.

In

x

w5

Figure 30. Supercritical successive extraction of functions W5 and W7 ( ). Logarithmic
normal and exponential fraction distributions: and — — — —.

might not be employed for estimating the polymer composition. The
situation for a binary polymer is sketched in Figure 31. Evidently, if the
location of the binodal were exactly known, a single phase-volume-ratio
determination at a given value of would suffice for establishing the position
of X.
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Attempts to extend this principle to multicomponent systems have met
with considerable difficulties7'8'42. These are threefold in nature. In the
first place, the location of the binodal must be known with great precision.
This calls for very accurate knowledge of the G function. Secondly, the
choice of the molecular weights of the polymer components includes a certain
arbitrariness. This could probably best be eliminated by introducing a
continuous distribution in the form of the sum of several exponential

functions. Finally, the choice of the number and the accuracy of the experi-
mental data also present problems. Since the original appearance of this
method'7'18, progress has been very slow, and only one example has been
encountered in which the distribution showed some likeness to that deter-
mined independently by means of the ultracentrifuge. The phase relation-
ships used were likewise established with the aid of the ultracentrifuge43.
Figure 32 shows the distributions which cover the same molecular weight
range and exhibit some similarity in shape.

However, this single example must be regarded as highly fortuitous, and
much further work remains to be done in the field. Whatever the outcome,
this thermodynamic method will, at any rate, remain very laborious and
unsuited for routine measurements. For calibration purposes it might find
a useful place among other techniques.

Even if we drop the detailed analysis described above, phase relations
will at least give some qualitative insight into the degree of polydispersity.
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Figure 31. Determination of the composition X of a binary polymer from phase relationships.
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Figure 32. Molecular weight distribution curves for a sample of polystyrene.

Rehage and Wefers44 presented an interesting example of this behaviour.
They determined the cloud-point curve for a sample of narrow-distribution
polystyrene in cyclohexane, and found that the precipitation threshold and
the critical point were located at concentrations lying a factor 24 apart
(Figure 33). Nevertheless, the sample had a low b value (1.07). Hence, one
would expect the distribution to be narrow and, consequently, the threshold
and consolute concentrations to be closer together. Determination of the
M value disclosed the origin of the supposed discrepancy; the ratio M/M
was considerable. This example illustrates that the MJM value alone is a

28 o

o—.o
27

L)
0

26 A.

0 5 10 15 20

Polystyrene concentration,wt 0/0

Figure 33. Cloud-point carve of a sample of polystyrene in cyclohexane. Data from Rehage
and Wefers44. Cloud points: 0, critical point: 0; coexisting phase compositions at 2 ()
and 10 (A) per cent whole polymer concentration. Characteristics of polystyrene sample:

= (4.4±O.2)x105;Mw = (4.7+O•2)x105 M5 = 65x10'; b = 107±007;M/Mw= 1•4.
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very ambiguous measure of the polydispersityl7'2° and additional data are
needed for obtaining sufficient certainty. One of these might be the M2/M
ratio, and another, less direct one, might be the difference in threshold and
critical concentrations. When the latter is chosen, it is useful to look for
polymer-solvent systems in which g is strongly dependent on the concentra-
tion (ag/b > 0), since, as we have seen, this tends to widen the miscibility
gap45.

McIntyre et al.46 also noted that the relation between threshold and
critical concentrations reflects the polydispersity of the sample. They
proposed to use the ratio c/thr (polymer volume fractions at critical point
and threshold) for determining M/M. Such a relation is not independent
of the type of distribution, as is witnessed by Figure 34, which shows calculated

C

U

Figure 34. McIntyre plot for logarithmic normal (I) and exponential (II) distributions.

9' c/9thr values for logarithmic normal and exponential distributions. Figure 34
suggests that the influence of the distribution ceases to exist at low values of
b. This is not so much a disadvantage as it may seem, because the method
may still serve a useful purpose in the range of very small b values, which
cannot be determined with great accuracy by direct measurement of M
and M.

5. CONCLUSIONS
Preparation of fractions with narrow distributions, in particular if carried

out on a large scale, is a possible, though laborious procedure. Repeated
extraction presents itself as the most reliable method since it is the least
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liable to be influenced by the initial distribution and the polymer concen-
tration. The latter aspect makes extraction most suited for scaling-up.

None of the preparative methods considered here comes anywhere near
to its ultimate aim, isolation of pure components. It should be realized that,
with M/M values as low as e.g. I 03, which may rightly be considered a
notable achievement, we still (a) have an abundant number of components
(order of 1000) and (b) may, at the same time, find ourselves up against a
much higher value of M2/M.

Fractionation does not appear to be a promising means of determining
molecular weight distributions with great accuracy. One might consider
the possibility of deriving the molecular weight distribution from its influence
on phase relationships. A method based on this principle is still in the
initial stages of development.

LIST OF SYMBOLS
b MW/MU value of the whole polymer

= MW/MU value of the fraction
MW/MU value of the fraction

= free enthalpy (Gibbs free energy) of mixing
g = interaction parameter
M = molecular weightM = number-average molecular weight
M weight-average molecular weight
M z-average molecular weight
m = relative chain length
R gas constant= V'/V"
T = absolute temperature
V', V" = volumes of the dilute and concentrated phases
W = total mass of polymer
w(M) differential weight distribution
x size of the fraction in the concentrated phase, relative to the

mass of whole polymer
volume fraction of solvent

= volume fraction of polymer species i
= whole polymer volume fraction
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