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INTRODUCTION
Before the discovery of x-ray diffraction it was relatively easy to make

definite statements about 'crystalline' and 'amorphous': if the outer contours
of a material showed crystal faces it was considered to be crystalline, a
material showing irregular contours without faces was considered amorphous.
In fact, such a definition makes proper use of the word 'amorphous', the
etymological meaning of which is 'without form' and not 'disordered
structure'. After the discovery of x-ray diffraction many of the substances
considered as amorphous turned out to be micro-crystalline and, since the
internal structure is by far more essential for the understanding of the solid
state than the outer contours, the word 'amorphous' was more and more
used in the sense 'disordered structure' or 'frozen-in liquid structure' which
means that an amorphous structure is considered essentially 'non-crystal-
line' and with some resemblance to the structure of liquids. It was especially
the latter aspect which was pursued in the earlier studies of the glass struc-
ture1' 2 and in the interpretation of rubber elasticity3—6.

The most general statement one can make about the difference between
'crystalline' and 'amorphous' is that the former implies a three-dimensional
long-range order whereas the latter does not. Since intermediate structures
with one-dimensional or two-dimensional long-range order exist (e.g. in
liquid crystals) and the term 'amorphous' is in general not used for such
structures, it is more appropriate to use the term 'non-crystalline' for all
structures which do not possess a three-dimensional long-range order and
reserve the term 'amorphous' for those structures which do not have a
long-range order in any direction.

General agreement exists as far as the absence of long-range order is
concerned; however, there is a definite disagreement about the basic
feature of the short-range order in liquid and liquid-like structures. One
school, of which the main protagonist is Bernal7, postulates that this short-
range order bears no resemblance whatsoever to the crystalline order
whereas the other, of which the principal advocate is Hosemann8, considers
a 'paracrystalline' structure as representative for all types of short-range
order. The attraction of the 'paracrystalline' concept is its relatively concise
theory which greatly facilitates the interpretation of scattering diagrams,
whereas the Bernal model does not lend itself easily to a straightforward
mathematical treatment so that a quantitative check of its validity by
scattering experiments is extremely difficult.

It is not the aim of this paper to review the earlier work done in this field,
for which one finds an excellent bibliography by Kruh9, but to discuss some
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problems which are related to the non-crystalline state of macromolecular
substances.

THEORETICAL
General

Any interpretation of the scattering from a non-crystalline solid can be
derived from the basic equation of the kinematic scattering theory

I(s) =

where 3 = J'v exp(2nirs)dv
and

= Jvp(y)p(r +y)dvy
I is the corrected coherent scattering intensity in electron units,

s is the reciprocal space vector (s = 2sinO/A),

r the position vector in physical space,

p(r) the distribution of electron density, and

an auxiliary variable in physical space.
p*2 is called the auto-correlation function or the self-convolution of p

and is related to but not identical with the Patterson function used
in crystal structure analysis.

Taking into account that the scattering of the total irradiated volume
(near s = 0) is, in general, not measurable, one has to replace p by (p —
<p>v) if I is to be the observable intensity (<P>v is the volume average of p).

The usual procedure for non-crystalline substances is to consider I as

independent of the direction of s which means that p is independent of the

direction of r, and one then obtains

sin2irrs
I(s) = 4irjr2p*2(r) dr

0 2nrs
from which follows10

sI(s) = 2frp*2(r) sin 2rrs dr

rp*2(r) = 2fs1(s) sin 27rrs ds

To obtain more detail, p*Z(r) is generally 'sharpened' by using (I —

J2 instead of I in the transform, and errors due to the truncation of I are

minimized by a suitable 'modification function'11. The result is called
'radial atomic distribution function'. A full discussion of the significance of
parameters derived from this function as well as a critical survey of its
limitations although worthwhile would exceed the scope of this paper. One
can, however, state that an extreme accuracy of the intensity measurements
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and of the corrections for the intensity is required in order to obtain results
which are worth interpreting in detail. The older work in this field cannot
be expected to possess this accuracy since the experimental possibilities
were rather limited and the scattering functions used for the computation of
the corrections (coherent and incoherent atomic scattering) were based on
relatively crude approximations. The progress made in recent years in both
the theory and the experimental techniques justifies a revision of the essen-
tial part of the older work. Encouraging examples of recent work in this
field are the studies on liquid metals by Kaplow, Strong and Averbach'2;
Fessler, Kaplow and Averbach'3; Kaplow, Rowe and Averbach14 and
Hosemann and Lemm15, which show that radial atomic distribution func-
tions can be interpreted quantitatively up to high values of r in terms of a
short-range order which has preserved a memory of the arrangement of
the atoms in the crystal state. It has become more and more accepted to
call such a short-range order 'paracrystalline' even when it does not corres-
pond to the exact mathematical definition of the coordination statistics as
proposed by Hosemann. In a way, this more qualitative definition is
similar to the old 'cybotactic' model of Stewart16.

An important consequence of such a model is that it necessarily implies a
finite size of the 'paracrystallites' and thus the existence of some sort of
boundary region between them. Such a grainy structure seems, at first sight,
to be in contradiction with the basically isotropic and homogeneous struc-
ture of a liquid, but the isotropy and the homogeneity of such a structure
are properties which are verified only on a relatively large scale in space
and time. In fact, a relatively densely packed system of particles can be
considered homogeneous and isotropic only above a certain limit in space,
and the isotropy of p2 implies no information on the isotropy of p on a
scale smaller than the size of the irradiated volume.

If the scattering of various monatomic liquids can be interpreted con-
sistently by a 'paracrystalline' model, there is even more justification for the
use of such a model for the short-range order of particles with strongly
anisotropic shapes since a dense packing of such particles is not possible
without a certain correlation between the position and the orientation of
the particles relative to each other. In fact, there are a number of indications
1722 that the short-range order in amorphous macromolecular substances
is anisotropic (the axes of neighbouring chains have a tendency to be parallel),
that a grain structure exists in such substances and that the grains show the
properties of uni-axial paracrystallites. The only essential difference between
the structure of these substances and the nematic phase of liquid crystals
seems to be the size of the anisotropic domains.

A quantitative study of the scattering of such substances should, in
principle, give information on the size and the disorder parameters of these
domains. In order to give an idea of the general features to be expected we
shall discuss two idealized cases, a bundle of linear molecules and a stack
of planar molecules without further positional correlation than the aral-
lelism of the principal axes.

Anisotropic short-range order
A practical way to treat such a problem is to consider first the three-dimen-
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sional auto-correlation function in the physical space and the corresponding
intensity distribution in reciprocal space, and to perform the spherical
averaging in both spaces afterwards.

In both cases we can define the auto-correlation function D of a domain
by

pl = N<p> + <PMY *(z*2 — NMS)

where NM is the number of molecules in the domain, M is the electron
density distribution of the molecule with respect to its centre and the prin-
cipal axis, < > the average about this axis (t/ibeing the azimuth in the plane
perpendicular to this axis), 3 is the Dirac delta distribution and z the distri-
bution of the centres of the molecules in space.

Neglecting the effect of finite domain size and inter-domain correlations,
the radial distribution function of the ensemble of domains can be expressed
as

*2 At *2
p JVD<PD>i

where ND is the number of the domains and <> the average over the solid
angle (spherical average). The spherical averaging of p2 can be per-
formed in two steps, first averaging over %b and then over the colatitude q,
which gives

,r/2= <pD*2>* sinq d99

and Kp*i>q, = NM <PM*2> + <PM>**2 * (<z*2> — NM3)

The corresponding expressions for the scattering intensity are

<ip>_NM<F2I>+ I<F>2l. (< Z21>*NM)

and i(s) = ND .f <'D> 5mw dw.

Performing the spherical averaging only on the first term on the righC
hand side in the equation for <ID>* one obtains

I(s) =N.<jF2 >&

sin 27rrgks

k rrr3s

the well-known Debye equation for the scattering of a molecular gas
(N = ND NM is the total number of molecules). The second term contains
the intermolecular interferences (a similar expression has been given by
Guinier and Fournet23).

Figure 1 shows the function <p*2D> for a bundle of linear molecules.
For simplicity, the molecule is represented only by the centres of the repeat
units and the packing in the bundle is taken to be hexagonal close-packed.
As would be expected, the intramolecular distances appear sharply, whereas
the intermolecular distances are represented by broad streaks parallel to
the principal axis. Since <p> has cylindrical symmetry, these streaks
represent the sections of hollow cylinders. The spherical average of such
distributions (Figure 2) produces asymmetric peaks with the maximum
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Figure 2. Components of the radial distribution function for a
(schematic).

493

bundle of linear molecules

THE STRUCTURE OF AMORPHOUS SOLIDS

Figure 1. Auto-correlation function for a bundle of linear molecules (schematic).
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shifted to higher values of r. The profile of these peaks is related to the
cross-section of the wall of the cylinder in the same way as the profile of a
random-layer line is related to an (h/c) interference24—27.

Figure 3 shows the corresponding intensity distribution in reciprocal space.
It is now the effect of the intermolecular distances which appears sharply,
whereas the intramolecular interferences form streaks perpendicular to the
principal axis. These streaks are sections of planes, the spherical averages
of which appear as step-functions in the radial intensity distribution (Figure 4)
when plotted as sI(s) versus s.

Figure 5 shows the auto-correlation function for a stack of planar molecules.
The intermolecular distances form a series of planes perpendicular to the
principal axis; the intramolecular distances appear sharply. The pattern is
similar to that of the intensity distribution for a bundle of linear molecules
and thus shows similar features in the spherical average (Figure 6). The
corresponding intensity distribution (Figure 7) shows a series of hollow
cylinders which represent the intramolecular interferences, and a series of
equidistant points which stem from the parallel stacking. The radial intensity
distribution (Figure 8) shows asymmetrical intramolecular interferences and
symmetrical intermolecular interferences.

From this, one can conclude that information on the molecular structure
is more directly accessible in the radial distribution function, whereas the
intensity distributions give a clearer picture of the intermolecular arrange-
ment. It is, however, possible to obtain the desired information also from the
asymmetrical peaks. In the case of the spherical avcrage of planes with
finite thickness (Figures 4 and 6) the profile of the cross-section of the planes
produces step-functions with smoothed edges in sI(s). This can be considered
as a convolution of the profile of the cross-section with an ideally sharp
step-function from which the profile can be obtained by taking the first
derivative. In the case of asymmetrical peaks produced by the spherical
average of rods or cylinders, the profile of the cross-section can be obtained
by a Fourier transform method27.

The profile of the symmetrical peaks in the radial distributions can be
considered as a linear projection of the three-dimensional distributions as
long as their width is sufficiently small compared with the distance of the
centre of the peak from the origin of the space in question. This so-called
'tangent plane approximation' is generally used for the interpretation of
powder diagrams. In the case of amorphous substances this approximation
is not always valid since the peaks can have considerable broadening. This
problem has been discussed in detail by Townsend28 and a Fourier transform
method for computing the true spherical average for peaks which are
laterally broadened by crystallite size effects only has been given by Warren
and Bodenstein29. A simple solution of this problem has been given by
Ruland30 for a spherically broadened peak in which case one can show that
the profile in sI(s) corresponds to the linear projection (Figure 9). It can be
shown that, for the same reasons, the broadening due to truncation effects is
symmetrical only in r<p*2> This indicates that the direct study of the
functions r<p*2> , and sI(s) is, in certain cases, preferable to a study of
<p*2> and i(s), or r2<p*Z> and s21(s), respectively.

So far we have neglected the effect of finite domain size and inter-domain
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Figure 3. Intensity distribution in reciprocal space for a bundle of linear molecules
(schematic).
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Figure 4. Components of the radial intensity distribution for a bundle of linear molecules
(schematic).
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Figure 5. Auto-correlation function for a stack of planar molecules (schematic).
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Figure 6. Components of the radial distribution function for a stack of planar molecules
(schematic).

496



THE STRUCTURE OF AMORPHOUS
S

S

I
S

S

S

I

SOLIDS

A
Intermolecular interferences

'S

of the radial intendty distribution for a stack of planar molecules
(schematic).

497

I

I
Figure 7. Intensity distribution in reciprocal space for a stack of planar molecules (schematic)•

Intramolecular interferences

V)

Figure 8. Components

Jy



W. RULAND

f(s)
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Figure 9, Spherical average and linear projection of a spherically broadened peak (By the
courtesy of Carbon).

correlations in order to make the similarities between radial distribution
functions and intensity distributions more evident. If one assumes a sufficient
disorder in the distribution of the centres of the domains and their mutual
orientation one can write the approximation

ND <pD*2>w + <P>2v (7*2 — NDTD*2)

where <p>v is the volume average of the electron density, Tv is the shape
function of the irradiated volume and 1'D the shape function of the average
space occupied by a domain. (A shape function has the value unity inside
the boundaries of a body and the value zero outside of the boundaries).
Since p2 is not directly observable but only (p — <p>v)*2 this gives

(p — <p>v)*Z = Nr (pD*2 —
<P>v2 ID*2)

A schematic presentation of such a function is given in Figure 10 for a stack
of planar molecules.

Small-angle scattering
We have so far dealt with the scattering at relatively wide angles wher

the scattering of a liquid and the scattering of an amorphous solid show
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Figure 10. Radial distribution function (schematic) for a stack of planar molecules, taking
into account finite domain size and a dense but disordered packing of the domains.

similar features. This is, in general, not the case for the small-angle scattering.
The small-angle scattering of a liquid is monotonic since the density
fluctuations in a liquid are small and homogeneous, and there is a direct
relation between the fluctuation of the particle density and the compres-
sibility. An amorphous solid can show very high density fluctuations which
cause various types of small-angle scattering of sometimes considerable
intensity, and there is no direct correlation between the density fluctuation
and the compressibility. The differences in the magnitude and the type of
density fluctuations can be assessed by a weighted average of the observable
scattering intensity (Jobs) near the origin of the reciprocal space. Starting with

where

one finds

'obs = (Jp)*2

Zip = p — <P>v,

I 'obs Isdv = $Zi*2p Ts dv

where s is the Fourier transform of Ts, and Ts is the shape function of a
sampling volume for the averaging. Provided that the sampling volume is
small compared with the total irradiated volume the above integrals are
equal to

V Vs (<p2>s — <p>2v)

where V is the total irradiated volume, Vs the sampling volume and <p2> s
the average of the square of the density inside the sampling volume. By
proper normalization one obtains from this expression the density fluctuatiou

<p2>s — <P>2V

<P>2v
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as a function of the sampling volume. For liquids, the density fluctuation as a
function of the sampling volume tends rapidly towards a constant value
when the dimensions of the sampling volume exceed the range of interparticle
interactions. This means that the small-angle scattering intensity of a liquid
tends towards a constant value when s approaches zero.

In amorphous materials, the density fluctuations can continue to vary
as a function of the sampling volume up to large dimensions, for example,
due to the existence of a micropore system. This means that the small-angle
scattering does in general not tend towards a constant value as in liquids.
However, if the short-range order is similar to that in a liquid, one should
expect a constant intensity component from this in addition to the small-
angle scattering from other structural features.

In connection with this discussion it should be mentioned that the
fluctuations of a two- or three-dimensional paracrystal as defined by
Hosemann and Bagchi8 are a function of the size of the paracrystallite, and
tend towards infinity if the size becomes infinite. It can be shown that the
spherical average of the small-angle scattering of a finite three-dimensional
paracrystal with equal distance statistics along the main axes is given by

1 3 J2a 3 J2a 2 42a 3

+(-) +(--)]
where clip is the shape factor and Vp the volume of the paracrystal, and

2aJa2 the relative mean square deviation along the main axes. An inspection
of this equation shows that only the last term between the square brackets
yields a constant intensity distribution; the others form a peak with a
maximum at s 0, the intensity of which increases with increasing volume
of the paracrystal. This feature appears to be due to the basic hypothesis
made in Hosemann's theory of the paracrystal that the two- or three-
dimensional disorder statistics can be composed of mutually independent
one-dimensional statistics along the main axes. A one-dimensional para-
crystal, on the contrary, gives a constant intensity at small angles1° as
observed experimentally for liquids. This discrepancy indicates that the
application of a multidimensional disorder model as defined by Hosemann
for the quantitative evaluation of scattering effects is limited to the inter-
pretation of the wide-angle scattering (interparticle interferences), and that
the theory of the multidimensional paracrystal has to be further developed
and refined before it can be used for the interpretation of the continuous
small-angle scattering due to density fluctuations.

EXPERIMENTAL RESULTS
In this section a short survey will be given of experimental proofs and

justifications for the theoretical treatment given in the last section. This
survey is incomplete since it is based mainly on the authors' own contribu-
tions in the field and, for this reason, the anisotropic short-range order of
planar molecules is treated in more detail than that of linear molecules.

500



THE STRUCTURE OF AMORPHOUS SOLIDS

Linear molecules
In a study of Nylons of various degrees of crystallinity3' it was found that

the total coherent scattering intensity, when plotted as sI/f 2 versus s,
shows well-defined steps near s = 04 and s = O8 (Figure 11). These steps
are the intramolecular interferences of portions of extended chain con-
figurations, and the position of the steps corresponds roughly to the average

V)

15

1•0

05

0

Figure 11. A plot of sI/f' versus s for samples of Nylon 6
Polymer).

and Nylon 7 (By the courtesy of

repeat distance ( 25 A) of the zigzag. The most interesting feature is that
the step height in the normalized intensity distributions does not show any
significant change with crystallinity and corresponds roughly to the theore-
tical value obtained if one considers the total material to be in the form of
portions of extended chain configurations. This means that the majority of
the molecules in the amorphous material is also in such a form.

Intensity maps of the diffuse disorder scattering of various Nylons32
in fibre form show this effect more clearly (Figures 12, 13 and 14). The
resemblance between these maps and the schematic presentation in Figure 3
is evident. The modulations on the streaks perpendicular to the fibre axis

501

NYLON B
Sample 3

NYLON 7
Sample 2

05 10 s



W. RULAND

Fibre axis
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Figure 12. Diffuse disorder scattering of Nylon 6 (By the courtesy of ISforelco Reporter)
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Fibre axis
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Figure 13. Diffuse disorder scattering of Nylon 66 (By the courtesy of Norelco Reporter).
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Figure 14. Diffuse disorder scattering of Nylon Ii (By the courtesy of Norelco Reporter).
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(the intramolecular interferences) are due to the structure factor of the
repeat unit of the chain. The diffuse maxima on the meridian are the
intermolecular interferences corresponding to bundles of linear molecules. A
quantitative evaluation to determinc the fraction of the material contributing
to these features of the intensity distribution was not carried out, but one can
conclude from the absence of any significant isotropic interferences that the
anisotropic intensity distribution is representative for the major part of the
material, which means that at least some of the amorphous domains are
anisotropic and preferentially oriented.

Planar molecules
Radial distribution functions for stacks of planar molecules are shown

in Figure 15. These functions have been determined in earlier work33, on
the structure of coal. Taking into account the broadening of the intra-
molecular peaks due to truncation effects, the similarity between Figure 15
and Figure 10 becomes evident. True intramolecular distances are detectable

Figure 15. Radial distribution functions for the coal maceral vitrinite and various extraction
pi oducts (By the courtesy of Pergamon Press).
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0
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Figure 16. Theoretical radial distribution function for the carbon skeleton of 9-methyl-
anthracene taking into account the truncation due to the upper limit in s for Cu radiation

(By the courtesy of Pergamon Press).
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Figure 17. Theoretical intensity distribution in reciprocal space used for the evaluation of the

scattering of low temperature carbonized material (By the courtesy of Carbon).
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Figure 18.
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Molecular size L and imperfection of the hexagonal network A (By the courtesy
of Carbon).

Acenaphthylene
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Figure 19. Average interlayer spacing (By the courtesy of Carbon).
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up to about 7 A, and two maxima of the intermolecular distances are present.
For comparison, Figure 16 shows the theoretical radial distribution function
for the carbon skeleton of 9-methyl-anthracene calculated with the same
truncation as in the experiment (Cu radiation). One can conclude from this
that planar molecules with an average diameter as small as 7A can show a
definite tendency towards parallel stacking. In the present case, there are
only about 2--3 together in a stack.

Figure 17 shows a scheme of the intensity distribution in reciprocal space
used for the evaluation of the wide-angle and medium-angle scattering of
various organic substances carbonized at low temperatures30. One can
distinguish between three regions, the first (up to s 04) contains
essentially only intermolecular interferences, the second (between s 04
and s 065) shows a superposition of inter- and intramolecular inter-
ferences and in the third (s > 065) the intermolecular interferences become
negligible so that the intensity distribution is determined by intramolecular
interferences only. This was found to be valid for domain sizes up to about
30 A; for larger sizes the parallel stacking becomes more perfect and the
higher order maxima of the intermolecular interferences show up more and
more intensely. For sizes lower than 30 A the scattering at s-values larger
than 065 can thus be treated in the same way as the scattering of an entirely
random distribution of molecules. Under these conditions a least square fit
of suitably chosen molecular scattering curves34' can be used to obtain
information on the average size and the size distribution of the molecules.
Figure 18 shows the results of such a study on the amorphous product of
pyrolysis and carbonization of acenaphthalene and bifiuorenyl30, and
Figure 19 gives the interlayer spacing obtained from the intermolecular
interferences. Figure 20 shows the most probable molecular structures
deduced from these studies occurring in this process. This has led to an
interpretation of the possibility and the ease of graphite formation in terms of
the steric features of the intermediates formed in the first steps of the pyrolysis.

AceriaphthyLene

Sh Layer— L] growth

(I)\

Bitluoreny I

0 0 —Inhibition of Layer
0 0 0 0 0 0 growth up to 600°C

(VI) (VII)

Figure 20. Initial stage of carbonization (By the courtesy of Carbon).
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In cases of sterically unfavourable intermediates, the formation of large
hexagonal layers is inhibited and one obtains an amorphous carbon which is
stable up to high temperatures. Such carbons show domain sizes in the
50—100 A range and relatively well-separated asymmetric maxima. Such
maxima can be analysed by a Fourier transform method27, and a recent
study on carbons obtained from polyacrylonitrile36 has shown the applicability
of this method. Figure 21 shows such an (hk) interference after correction for
various angle-dependent factors. Figure 22 gives the auto-correlation function

044 046 048 050
s[A1]

052 054

Figure 21. Profile of the (10) line of the 2200°C sample of carbonized PAN corrected for
polarization, absorption, and atomic scattering, and normalized. • • scattering of infinite

layer
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Figure 22. Size distribution function AL versus r.
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of the layer shapes obtained from the analysis of two such lines in the
scattering of a polyacrylonitrile sample heated to 2600°C in an inert
atmosphere. Figure 23 shows the mean square displacement of atoms in the
layer plane relative to each other as a function of the interatomic distance
and Figure 24 the variation of the size of the layers with the temperature of
heat-treatment resulting from the analysis. The conclusion drawn from this
study is that the heat-treatment leads to an increase of order in the layer
structure which develops from a paracrystalline state (2000°C) over a
mixed paracrystalline and strain-deformed state (2200°C, 2400°C) to a

o

2000 2200 2400 2600 2600 3000
H TI,

Figure 24. Weight average of l(<l>) versus heat treatment temperature (HTT).
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structure with point defects of decreasing diameter. The layer size does not,
however, increase very much (from 47 A at 2000°C to 57 A at 3000 °C)
and this inhibition of layer growth seems to be the important factor for the
resistance against a transformation into graphite.

On the same series of samples small-angle scattering studies have been
carried out37 which show the existence of an inaccessible fine pore system
with pore sizes in the 10—20 A range. This pore system can be expected to
play an important role in the inhibition of the layer growth. In the course
of the small-angle studies it was found that a correct evaluation of the data
is possible only if one separates the density fluctuations within the domains
from the scattering of the pores. Figure 25 shows how this separation can be
obtained. A plot of S3Oobs versus s2 (lobs is the total observed small-angle

10

0

Figure 25. The function s31, as observed and after correction, versus s2.

scattering measured with an infinitely high slit) reveals that there are two
components of the scattering, one which shows a decrease in r3 (the pore
scattering following Porod's law) and another which decreases with r1.
The latter stems from an anisotropic density fluctuation (perpendicular to the
layer planes) in the domains due to a variation of the interlayer spacing
as well as a variation of the size of the layers in a stack. In Figure 26 the value
of this fluctuation is plotted against the heat-treatment temperature. One
can see that the order improves with increasing temperature. It is of interest
to note that the values of the fluctuation are of the same order of magnitude
as those found in liquids.

So far we have deduced the existence of the anisotropic short-range order
from particular features occurring in the radial distribution functions or
the radial intensity distribution. A recent electron diffraction study38 on
carbon fibres demonstrates these effects more clearly. Carbon fibres are a
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Figure 26. The variation of the density fluctuations as a function of the heat-treatment tem-
perature for PAN carbons.

special type of amorphous carbon with about the same structure and size
of the domains as other amorphous carbons but with a preferred orientation of
the principal axes of the domains perpendicular to the fibre axis. Figure 27
shows a theoretical intensity distribution of a single (uk) interference for
such a type of preferred orientation, the primary beam is perpendicular to
the fibre axis. Intensity distributions of this type can be computed for various
degrees of preferred orientation using a method described by Ruland and
Tompa39. Figure 28 shows a schematic presentation of the effect produced by
a deviation of the fibre axis from the perpendicular position. Figures 29 and 30
show two electron diffraction diagrams, the first with the beam perpendicular
to the fibre axis, the second with a slight deviation from the perpendicular
position. The intra- and intermolecular interferences show up very clearly
and can be separated without difficulty. The average domain size is some-
what less than 100 A.

GENERAL CONCLUSIONS
It may be considered somewhat daring to draw general conclusions from

the relatively few experimental results given in this paper. It should be
emphasized, however, that these studies show the necessity for an extensive
and flexible use of Fourier transform and convolution theory to interpret the
scattering of amorphous materials and that the determination of a radial
distribution function is by no means the end, but rather the beginning of a
structural study.

As in crystal-structure determination, one should try various ways to
solve the problem; sometimes the solution is easier in an appropriate
interpretation of the reciprocal space, sometimes an interpretation of the
auto-correlation function is more successful. If preferred orientation can be
introduced, this leads generally to an increase in information.
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Fibre axis

Figure 27. Theoretical intensity distribution of an (uk) interference for perfect orientation
of the layer planes parallel to the principal axis.

b

Figure 28. Schematic presentation of an oblique section through an (hk) interference
(a) Definition of the angle a; (b) Contours of the interference function on the section.
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