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INTRODUCTION
The dielectric properties of polar chain polymers have long1'2 been of

great interest to many workers. For solid materials, there is great practical
justification for such interest in the sometimes very close relation between
mechanical and electrical behaviour, as well as in direct applications to
problems of electrical insulation. The study of dielectric constant and loss in
dilute solutions has fewer technical applications, but offers information
about molecular conformation under both equilibrium and dynamic con-
ditions, and thus can be very useful in the characterization of macromole-
cular structure. As examples we may cite the classical work of Oncley3 on
globular proteins and the more recent studies of Wada4 on synthetic helical
polypeptides or of Yu, Bur and Fetters5 on synthetic helical poly(isocyanates).
These studies all deal with rigid ellipsoidal or rod-like macromolecules, while
in the following pages we are concerned entirely with polar polymers in
the randomly coiled state, in which there may of course be short chain
segments assuming helical conformations, but no persistence of such special
conformations over extended lengths. Although we stray from the narrow
realm of dilute solutions on occasion, the emphasis is on the behaviour
of macromolecules essentially isolated from each other by intervening
solvent. Crystalline polymers or amorphous polymer systems with extensive
mechanical chain entanglements will therefore not be discussed. Polyelectro-
lytes are also avoided.

It is well known that the mean square dipole moment of a polar macro-
molecule differs from the sum of squares of the individual bond moments
through a factor which depends on the chain configuration and on the
conformational statistics, thus affording one of the important methods for
exploring these aspects of polymer structure6'7. We may not pause to discuss
these equilibrium studies, but hasten to consider the dynamical behaviour,
which also reveals the coupling effects of chain structure.

It may be recalled that the simple Debye8 relation for the complex
permittivity or dielectric "constant" E* under steady alternating field

= E' — ie" = E + (Es — eGo) (l + iWT)' (1)

(Eq. 1) obtains only if the orientations of all dipoles relax at exactly the same
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rate by a random process, as described by the autocorrelation function
<(t) x (°)> = <(O)2> exp (—t/T)

(Eq. 2) for the dipole moment vector p. In these equations es and e represent
limiting low- and high-frequency dielectric constants, is the circular
frequency of the applied field and is relaxation time9. Deviations from the
Debye equation are frequent even in non-polymeric liquids'0, and physically
are best explained by recognizing the orientational relaxation process to be
too complicated11'12 to obey Eq. (2). For polymer systems, the deviations are
on the average somewhat larger. As shown by Kirkwood and Fuoss'3,
this is a natural consequence of chain connectivity, and the formal device
of salvaging Eq. (1) by introducing a distribution of relaxation times
acquires physical significance in this case. Some polymers have two or three
distinct regions of dielectric dispersion, more or less widely separated
from each other in frequency (at constant temperature) or temperature (at
constant frequency). Each such region may itself comprise a band of relaxa-
tion times, yielding a broader curve than Eq. (1), but we shall not dwell on
such details. Rather, we wish to examine the relation between the molecular
structure of a polar chain polymer and the number and nature of its dielectric
dispersion regions. For each such region, we ask for the dependence of its
average relaxation time (adequately taken here as the reciprocal of the
circular frequency Wm at which €" achieves its maximum) on chain length
and structure and on such variables of condition as temperature, concentration
and nature of solvent.

Polar groups in the repeat units of a polymer chain may be classified
geometrically into three types, as exemplified in Table 1. If the repeat unit

Table 1. Three types of dipolar groups in chain molecules: (A) Parallel
to chain direction, (B) Rigidly attached to chain backbone but per-

pendicular to chain direction, (C) On flexible side chain

Examples A
Types:

B C

Poly(vinyl halides)
Poly-p-halostyrenes
Poly(ethylene oxide)

><

Poly(vinyl acetate)
PoIy(methyl methacrylate)
Poly(m-halostyrenes)

x ><

Polyalanine
Poly--propiolactone x x
Cellulose acetate
Poly-y-benzylglutamate >< x ><

cannot be chosen to have a plane of symmetry normal to the chain contour,
it must have a dipole component parallel to the chain contour (Type A).
For a sequence of n such units without reversal of directional sense, the
dipole vector jLfl(A) must correlate completely with the displacement
vector ru of the sequence, as sketched in Figure 1, and we have

<jn x rn> = const. X <rn2)
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for all conformations. The two important consequences of this correla-
tion are: (1) the mean square dipole moment <tn(A)2> is subject to the same
excluded volume effects as <r112>; hence, if unreversed Type A sequences are
long, the static dielectric increment per unit mass of polymer solute is an
increasing function of molecular weight except under theta conditions; and
(2) the relaxation behaviour of ,(A) is identical to that of rn, forcing
intimate connections between dielectric and low-frequency viscoelastic relax-
ation if unreversed sequences are long. This second consequence is elaborated
and cofirmed in the next section of this paper.

Figure 1. Schematic representation of chains with Type A and Type B dipoles. Correlation of
dipole vector FLu with displacement vector r occurs only in the former case.

The second kind of dipole component is like the first in being rigidly
attached to the chain backbone, but is perpendicular to the chain contour. For
a sequence of n repeat units, there is no correlation between the vector sum of
such Type B components and the displacement vector; we have
<zn(B) x r,> = 0. Physically this is easy to see, for a fixed displace-
ment length r is compatible with many different values of .11(B). We may
therefore expect that: (1) the Type B contribution to the static dielectric
increment shows negligible excluded volume effects; and (2) its relaxation
will in general involve skeletal chain motions of smaller scale and shorter
relaxation time than for Type A.

Finally, polar groups may be attached to side groups with one or more
bonds permitting internal rotation. These will give a third type (C) of
dipole component, whose relaxation behaviour need not directly implicate
the chain backbone, as long ago pointed out by Tuckett14. In this article
this kind of dipole will not be further considered.

PARALLEL DIPOLES
The behaviour of flexible chains bearing dipoles of Type A will now be

illustrated by a well-documented example, that of atactic poly(propylene
oxide) of low molecular weight15"6. Our own experiments'5 were all made
with undiluted liquid polymers rather than on solutions, but the chains were
short enough (the highest M being about 5 x 103) so that the effects of

We mean that no bonds permitting internal rotation connect the polar group to the
chain skeleton.
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Figure 3. Reduced plots of dielectric constant E' and loss factor e" at various temperatures
against logarithm of frequency for an atactic poly(propylene oxide) with M 2 x 1O

(data from ref. 15).
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mechanical entanglement could be neglected. This statement is supported by
the fact that the viscosity of these liquid polymers is proportional to just the
first power of molecular weight. Under such conditions'7, we may hope to
apply without ambiguity existing theories of polymer Brownian motion.

A

B1H3 A
Figure 2. Head-to-tail poly(propylene oxide) chain, showing presence of both Type A and

Type B dipole components in each repeat unit.

Since the polymers were commercial samples prepared by a non-stereo-
specific base-catalyzed process, they have'8 an atactic, predominantly head-
to-tail structure and a narrow molecular-weight distribution of the Poisson
type'9'20. It is seen from Figure 2 that each repeat unit of the chain carries a
small Type A dipole component.

The data for one sample with M 2 x 10 are shown in Figure 3, in
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which results for a number of temperatures have been superposed by the well
known reduction technique'7. The small loss peak on the low-frequency
of the big peak is clearly evident, perhaps especially so in the Cole—Cole plot
of Figure 4. Experiments with propylene oxide polymers of other molecular
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Figure 4. Reduced Cole—Cole plot of " against e' for the poly(propylene oxide) of Figure 3
(ref. 15).

weights from 1 x lO to about 5 x 1O show that the large peak is quite
insensitive to chain length, but that the frequency of maximum loss for the
small peak moves to lower values as the chain length is increased, varying
about as l/M2 over the range studied. Since the total dielectric polarization
associated with this small dispersion region is also found to be independent of
the nature or number of end groups, it must be an intrinsic property of the
chain structure; and in view of the dependence of the relaxation time on
chain length it can only be due to the Type A dipoles. So interpreted, it
leads to a reasonable69 Type A dipole moment component of O18 debye
per repeat unit as compared to about 1O debye per unit for the perpendicular
Type B component.

To discuss the chain motion in detail, it is useful to begin by recalling the
well known normal-coordinate description21' 22 of conformational diffusion.
The symmetry of the first few (slowest) modes is indicated in Figure 5, where
the arrows are placed at positions of maximum amplitude and the nodes
fall between the arrows. The translational mode, k =0, is electrically active
only for ions. Mode 1 would clearly be active for chains bearing an unre-
versed sequence of Type A dipoles from one end to the other, since the
electric field would tug the two chains ends in opposite directions. Indeed
the ends move in opposite directions for all the odd-numbered modes, which
would therefore all be dielectrically active to some extent for a chain of the
type just mentioned. More generally, we observe that any specified arrange-
ment of Type A dipoles responds to an alternating electric field by just those
modes whose symmetry is congruent to that of the charge distribution along
the chain contour.

The quantitative development of the above statements is straightforward.
Since only the slow long-range diffusional modes of the chain are involved, it
is adequate here to use the ball-and-spring model elaborated by Rouse21,
Zimm22 and others. In this model, the chain is temporarily conceived to
consist of an arbitrary large number N of Gaussian springs or "submolecules",
connecting N+ 1 beads which serve as the centres of hydrodynamic inter-
action with the solvent. The resulting diffusion equation separates into
independent parts, one for each normal coordinate in each spatial direction,
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kO

etc.

Normal modes for
Linear mo'ecule

Figure 5. Schematic representation of the normal coordinates for a linear polymer chain. The
solid vertical lines represent the chain contour, which of course really follows a more or less
randomly kinked space curve in any one conformation. The dashed lines indicate relative
magnitudes of the displacements. Arrows are placed at positions of maximum amplitude.

provided that excluded volume effects between the beads are either ignored
or approximated by a constant scale-factor, and further provided that the
hydrodynamic interactions between the beads are either ignored2' or
represented by scalar averages22. If more realistic representations of excluded
volume or hydrodynamic interactions are introduced, the normal coordi-
nates are coupled and some form of perturbation theory is required for a
complete treatment23. Very recently, Fixman has shown that field-theory
operational techniques offer a powerful general method for coping with these
more difficult mathematical problems24.

Returning to Zimm's treatment, we find25 that in dilute solution at a
weight concentration c in a non-polar solvent the dielectric increment due
to a polymer bearing Type A dipoles is described by the equations:

4E* — (/JE) = (4rrNA2c/27RTM) (Eo + 2)2 <p2(w)> (3a)

= P2/(l + iwrk') (3b)
modes k

Pk = (Nb/kr) eQ (3c)
beads j

Q,kj = (2/N)1/2 cos (j/cir/N) (3d)

In these relations, NA is the Avogadro number, R T thermal energy, M the
polymer molecular weight, eo the dielectric constant of the solvent, w the
circular frequency of the applied field, Nb2 the mean square end-to-end
distance for the entire chain and eo, el, . . . , e, . . . , e the assigned electric
charges on the beads of the model. As given above, the result may appear to
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depend on the number N of submolecules chosen, but this is not true if the
sequences of Type A dipoles without reversal of direction are sufficiently
long; for then we can replace the sum of Eq. (3c) by an integral, putting
j = sN and writing

= (2Nb2)"2 (k' S cos (ks) e (s) ds, (3c')

where e(s) is an appropriately defined charge density along the chain con-
tour, expressible in terms of the magnitude and disposition of the Type A
dipoles. Relations (c) and (d) are not exact, for the true normal modes in
the case of strong hydrodynamic interaction are not quite26 the pure single
trigonometric terms pictured in Figure 5; but the approximation is more than
adequate for our purpose, and so we may say that the Fourier components
of the charge distribution along the chain contour determine the activity
of the low-frequency diffusional modes in the dielectric relaxation spectrum.
For example, if we have an unreversed sequence of Type A dipoles down the
entire chain, Pk vanishes for all even IC modes, as required by the symmetry,
and is inversely proportional to IC for the odd modes. The first mode, IC =1,
is therefore dominant, and this is (cf. Figure 5) largely a rotational diffusion.

The dielectric relaxation times Tk' in dilute solutions are related to the
intrinsic viscosity [] by Eqs. (4) and (5) which vary with the extent of
hydrodynamic shielding:

12 M []0/ir2R TIC2 (dilute solution, free draining21) (4)

342 M []o/RTAk' (dilute solution, non-draining2) (5)

where o is the solvent viscosity and the Ak' are numbers which have been
tabulated26' 23b for low IC and which become asymptotically equal to
i2k3/2/2 for large IC. Equations for intermediate draining conditions are
available if needed27' 28 For undiluted liquid polymers below the entangle-
ment range, there is both theoretical argument29 and experimental evi-
dence30 supporting the use of the free-draining model. This leads to Eq. (6)

= 12 M'q/ir2RTpk2 (undiluted polymer, free draining) (6)

where /p is the kinematic viscosity of the liquid polymer; while a similar
manoeuvre for the non-draining limit would give Eq. (7), where L2 = Nb2.

= 161 NA'17L3/RTAk' (undiluted polymer, non-draining) (7)

There is no good reason to expect Eq. (7) to succeed, and indeed the evidence
favours the free draining formula (Eq. 6) for the undiluted poly(propylene
oxides).

For polymers in which the rotational—diffusional mode (k = 1) should
be dominant, the predicted relaxation time in dilute solution is similar for
almost any model. Thus, Eqs. (4) and (5) yield Eqs. (8) and (9) respec-

ri' = 121 M[q]i10/RT (free draining) (8)
= 085 M[]o/RT (non-draining) (9)

tively; but for a rigid impenetrable sphere of radius a, the Debye formula
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gives Eq. (10) almost identical to Eq. (8). Factors not far from unity are

Trot = 4irqoa3/kT 6 M['q]io/5RT,

also found from other treatments of rotational diffusion, such as the wire-
model results of Kuhn and Kuhn3' or the calculations of Hearst32 for a
rigid spherical distribution of segments. Since the experimental precision
of locating the frequency of maximum loss is not great, being subject to the
effects of concentration and polydispersity, it is patent that the present
theories are quite adequate to cope with the data for such polymers.

Returning now to poly(propylene oxide), we have first to remark that the
polymers studied were produced by a process in which the chains actually
grow in two directions, epoxide units adding to either hydroxyl end. Our
chains therefore are best represented by the formula

H(—O—CHR—CH2)—O--(CH2—CHR—O)H,
with x y. Thus there are two sequences of Type A dipoles pointing
in opposite directions from a point near the middle of the chain contour;
so the relevant modes (Figure 5) are numbered 2, 6, 10, 14, etc., with k = 2
as the dominant one. Baur's data for the sample of Figure 3 are compared
to this prediction in Figure 6, where it is seen that the Bueche formula,
Eq. (6), is in excellent agreement with experiment, and even the less appro-
priate Eq. (7) gives the right order of magnitude.

U
a)
U)

0

1 o3ir

Figure 6. Arrhenius plot of relaxation times for small Type A dielectric dispersion peak in
linear poly(propylene oxide) of molecular weight 2 >< 1O (data from ref. 15). Solid line B,
theoretical relaxation time (Ic = 2) according to free-draining formula, Eq. (6). Dashed line,

non-draining formula, Eq. (7). Circles, experimental values.

Trifunctional star molecules, formed by initiating the propylene oxide
polymerization with glycerol in basic medium, have been studied by

CH2—O—(CH2—CHR—O)H

CH—O—(CH2—CHR—O)H

CH2—O—(CH2—CHR—-O)H
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Burke83, who again found a small low-frequency peak corresponding to a
Type A dipole of O18 debye per propylene oxide unit. The active normal
modes in this case are those for which the three ends move in opposition to
the branch point, the principal one corresponding to the theoretical relaxa-
tion time67' 68 (Eq. 11) for free-draining undiluted polymer. The experi-

= 12 M'q/77T2RTp (trifunctional star) (11)

mental data for one such polymer, with M = 46 x 1O, are shown as
circles in Figure 7, and the curve is calculated from Eq. (11) with the measured

-4

U
6)
t1)

0-J -6

-7

-20 0 +20
Temperature, °C

Figure 7. Relaxation times for small Type A dispersion peak in a trifunctional star polymer of
propylene oxide with M = 46 x 1 O. Solid curve, theoretical curve according to Eq. (11).

Circles, experimental values (ref. 33).

values of M, and p. The agreement is as good as for the linear polymer.
Loveluck and Cole16 have confirmed Baur's results for poly(propylene

oxide) and extended them to solutions in methylcyclohexane, and they
have also observed a small Type A dispersion in poly(butene-1-oxide).
Low-frequency dispersions strongly depending on molecular weight have
also been reported in the past for cellulose esters and ethers34' 35. The
authors did not offer a complete quantitative interpretation of their data,
but in the case of ethyl cellulose, where the relevant viscosity and molecular
weight data are available, the Zimm relation, Eq. (9), for ri' gives36 a good
account of the observed relaxation times. It seems safe to conclude that
dielectric relaxation due to Type A dipoles is well understood, and that the
existence of such a dipole in the repeat unit is a sufficient condition for a
low-frequency dispersion with a molecular-weight-dependent relaxation
time. But, as will later be seen, presence of Type A dipoles is not a necessary
condition for such a dispersion.

One intriguing problem for further experimental study should be men-
tioned. If chain length or concentration are increased until mechanical
entanglements become prevalent, the long-range modes will be inhibited
and must eventually recede into the region of immeasurably low frequency.
In fact, no trace of the small Type A peak is found in the data of Williams37
for a poly(propylene oxide) of high molecular weight (M about 4 x 105).
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With appropriate polymer systems, it should be possible to observe directly
the effect of entanglements on Ti' through the transition from unencumbered
to strongly entangled chains.

PERPENDICULAR DIPOLES
Type B dipole components, rigidly attached perpendicular to the direc-

tion of the chain contour, present a much harder challenge to the theoretician
than those of Type A. For flexible chains, the vector sum of a sequence of
such dipoles does not correlate with the displacement length, so that the
relevant modes of chain diffusion are usually short-range or localt modes
which cannot be meaningfully described by the beads and springs of the
Rouse—Zimm model except in a somewhat fictitious sense. Putting the
matter in another way, we may say that the higher-frequency eigenfunctions
and eingenvalues of the diffusion operator are not known or easily derivable
for realistic models of the chain.

The first question to be asked about Type B dipoles is far from trivial,
and in the past has not received a uniform reply in the literature: how does
the mean relaxation time r for dispersion of a chain with only Type B
dipoles depend on the molecular weight M of the chain? In their pioneering
theoretical study of the breadth of dielectric dispersions in polar polymers,
Kirkwood and FuossiS predicted that -r should be proportional to M for
free-draining conditions. The calculation was later repeated by Hammerle
and Kirkwood38 with inclusion of hydrodynamic interactions between
chain elements, which reduced the exponent of M to in the non-draining
limit. The chain model employed in these papers is geometrically very
realistic, but in the mathematical treatment of the diffusion problem it was
necessary to resort to extensive premature averaging, a process which,
in the authors' own words, introduces "approximations of unknown validity".
Kuhn39 treated a more elaborate dynamical model, providing for an
internal viscosity; his result is essentially the same as that of Kirkwood and
Fuoss when the internal viscosity is neglected. Two criticisms of Kuhn's
work• may be offered:

(1) He restricts his treatment to internal rotations about only one chain bond
at a time. In other words, only certain rather large-scale chain motions are
considered, and true local modes are excluded from the start.

(2) J-Ie asserts that the dielectric spectrum must have the same form for all
flexible chains with rigidly attached dipoles, whether these are of Type A or
of Type B. This assertion cannot be reconciled with the analysis we have
presented above of dispersion due to dipoles of Type A.

Kuhn also emphasized that rotational diffusion always presents a possible
mechanism of relaxation. The importance of this possibility will be seen later.

Some years after the above papers appeared, Bueche40 pointed out that a
true short-range mechanism must lead to a mean relaxation time independent
of chain length. He made it clear that in such a case r is inversely propor-
tional to the frequency of passing from one stable local conformation to
another, but he did not offer an expression of this frequency in terms of
chain structure or properties. This is probably wise, as local mechanism for

The adjective "oca1" is sometimes used in a more specialized and restricted sense in
discussions of motion in solid polymers. See later in this article.
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various chains may differ greatly. For example, a short section of chain
between two coaxial bonds can move like a crankshaft41, as has been
examined in some detail for polyethylene by Schatzki42; while Reneker43
has depicted a quite different kind of conformational defect which can
travel easily along the polyethylene chain in its regular extended form; and
doubtless there are other possibilities. It may also be recalled that VanBeek
and Hermans44 demonstrated a high-frequency dispersion for a Rouse chain
(cf. previous section) carrying charges of alternating sign on the beads,
e = eo(—1)i. The relaxation time ist close to the shortest time TN' permitted
by the model, this being independent of chain length but proportional to the
friction constant of a bead and to the mean square length of the subchain
between adjacent beads. Of course such parameters cannot easily be related
to local chain structure, but the calculation does serve again to confirm the
idea that local-mode relaxation times need not depend on molecular weight.

The experimental evidence is now quite definite in indicating that the
relaxation time for a pure Type B dispersion need not depend on molecular
weight. To demonstrate this without ambiguity, we must not rely on data for
poly(methyl methacrylate), poly(vinyl acetate) or other polar polymers
which have both Type B and Type C dipole components, even though in
these cases the range of molecular weights and the precision of the measure-
ments may be specially high45. No doubt can remain for poly(vinyl bromide)
in dioxane46, poly(ethylene oxide) in benzene47' 48, and poly(p-chloro-
styrene) in benzene48. Some results for the last two systems are shown in
Figure 8, which gives double-logarithmic plots of the frequency at maximum

10 ._FoIy(ethy1ene10 -
oxide),

(Benzene, 25°)

10 -
x%? PoLy—4-CI-styrene,

N — — — — _________
3 '.. (Benzene, 25°)
E

S.

106 -

Poly-4-Cl-styrene S.
(o-Terphenyt, 50°) —'C- — — —.

PHS (Benzene, 25°)

M
Figure 8. Double logarithmic plot of frequency of maximum l055,fm, against molecular weight
for several polymers with Type B dipoles. Data from refs. 48, 64 and 65. The abbreviation

"PHS" stands for poly(hexene-1-sulphone).

t VanBeek and Hermans actually found two dispersions of equal strength, the second and
slower one lying at Ti'. But it is easily shown that the latter is actually due to the presence of a
type A dipolar component in the charge distribution they used; if the charges on the two
end beads are cut in half, the equilibrium polarization is also cut in half and the slow disper-
sion disappears!
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loss [fm = 1 /(2wr)] againstweight-average molecular weight. It seems clear
that truly local relaxation modes do exist.

Figure 8 also indicates that the speed of local relaxation processes is quite
sensitive to chain structure, as the fm values for poly(ethylene oxide) and
poly(p-chlorostyrene) in the same solvent at the same temperature differ
by a factor of about 500. Of course this is what we should expect if special
alignments of bond axes or other special conformations are necessary for the
relaxation to take place. It may also be conjectured thatfm should in general
depend on the configuration and stereoregularity of the polymer, but the
author is unaware of any experimental evidence on this question. The
temperature coefficients Offm are surprisingly iow, to judge by the examples
shown in Table 2. The very great kinetic flexibility of the polyoxyethylene
chain is especially noteworthy47.

Table 2. Dielectric relaxation in benzene or toluene solution

Polymer
Frequency (Hz) of

maximum loss, 25°C
Activation energy

(kcal/mole)

Poly(p-chlorostyrene)48'
Poly(p-fiuorostyrene)49
Poly(ethylene oxide)47'48

3 >< 10
4 x 108

15 >< 1019

48
48
25

Local relaxation processes in solution may also be observed by measure-
ments of nuclear magnetic relaxation50' 51 In general, the information
obtained complements rather than duplicates that from dielectric relaxation
data, although a correspondence may occur in special cases. For example,
McCall and Bovey52 have found a longitudinal n.m.r. relaxation time T1 of
about 020 sec for the para ring-protons of polystyrene (free-radical type)
in tetrachioroethylene solvent at 25°C. If we assume that the effects of
non-aromatic protons are negligible, we may apply the standard theory53
for a rigidly rotating frame, and thus obtain a rotational correlation time of
about 6 x l0— sec. For poly(p-chlorostyrene) in benzene at 25°C the
dielectric relaxation time corresponding to fm is about 5 x l0 sec. The
similarity of these two figures suggests that rotation of the aromatic ring
about the axis of the para substituent bond is not a major process in the
nuclear relaxation. For poly(cthylenc oxide) we see at once that one of the
most important processes for nuclear relaxation must be rotation about the
CH2—CH2 bond, while for the dielectric problem the other chain bonds
may play a larger role. Recent n.m.r. data for this polymer54 support this
statement, as the values of T1 do not have a simple relation to the dielectric
relaxation time; but the activation energies for the two phenomena are quite
similar, being about 29 and 25 kcal/mole, respectively.

Concentration dependence of the relaxation times may be quite small for
highly mobile chains at temperatures well above the glass-transition region.
Thus, the observed values of 7 for poly(ethylene oxides) increase by only
about a decade in passing from dilute solution47'48 to the undiluted liquid
state55. In the case of poly(p-chlorostyrene), for which the glass temperature
is about 110°C, dielectric relaxation at 25°C in toluene41' 56 shows (Figure 9)
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a greater variation with concentration. The curve drawn in the figure cor-
responds to an equation of the free-volume type (Eq. 12) where ç' is the

= A exp (—B/v1); v1 = — C (12)

volume fraction of polymer and A, B, C are constants. This type of equation
has been successful in correlating translational diffusion measurements in
polymer—solvent systems57. The constants used are of reasonable magnitude,
but at present they cannot easily be predicted on a priori grounds. It may be
observed that the relaxation frequency for the chiorostyrene polymer falls
to very low values at a volume fraction between 07 and 08. This is about
right for a polymer with a glass temperature of 110°C when undiluted. It is
also consistent with data of Fuoss58 on this polymer plasticized with biphenyl.

Students of dielectric dispersion in solid polymers will recall59 that fre-
quently two different dispersion regions can be identified as due to Type B

8

7
NI
E
C)

0,0—j5

4

3

Figure 9. Effect of concentration on maximum loss frequency for poly(p-chlorostyrene) in
toluene. Data from refs. 41 and 48. Solid curve, Eq. (12). Abscissa is volume fraction of

polymer.

dipoles. Examples6° are poly(chlorotrifluoroethylene) and polyvinyl halides.
The slower relaxation (usually dubbed a) is much the larger in magnitude of
polarization, and can be identified with the same mechanism that operates
in dilute solution: passage from one local conformation to another over
some sort of energy barrier. The smaller and faster fi peak is found below
the ordinary glass temperature ("Glass I" in McCrum's vocabulary61) and
must represent highly damped torsional oscillations in the chain bonds
but without passage over intramolecular barriers. In other words, the
torsional vibrations of the chain, which in dilute solution would lie above
the usual frequency range and would then be regarded as part of the so-
called atomic or vibrational polarization, are so much slowed down by the
medium that they appear as a loss region in the accessible frequency range.
In solid-state language, the energy dissipation is due to phonon scattering by
the anharmonic motions. The adjective "local" is sometimes restricted
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to just this type of dispersion as distinct from the a-mechanism. The relevant
force constants are of course composed of both intra- and intermolecular
contributions, and in favourable instances it has been possible60' 62 to
estimate these and hence to predict the magnitudes of the associated polariza-
tions. Formal treatments of the shape of the dispersions in such solid polymers
have been offered60' 63 but cannot be discussed here. The very interesting
study by Work and Fujita63 shows that delayed correlations between dipoles
may broaden the dispersion and sometimes produce two distinct peaks. The
application of this kind of model to experimental data may produce some
reinterpretations.

We have purposely delayed until this point the discussion of some very
recent measurements by Bates, Ivin and Williams64 which demonstrate
that our presentation as given so far is incomplete. They measured dielectric
constant and loss in dilute solutions of several polysulphones, of which the
results for poly- (hexene-l -sulphone), [—CH2CH(n-C4H9) SO2—] , in ben-
zene may be presented as typical. Since the structure is known to be very
strongly head-to-tail, there is certainly a Type A dipole component; and,
since the initiator of polymerization was monofunctional, there is an un-
reversed sequence, leading to the prediction of a Type A dispersion at Ti'.
The measured dipole moments show a small excluded-volume effect, in
confirmation of the Type A dipole, but they also make it clear that the major
component must be of Type B, as would be expected from simple structural
considerations. However, there is only a single somewhat asymmetric dis-
persion region for the entire polarization, centred at a frequency corres-
ponding to M[ij]'rjo/RT. The curve and open circles marked PHS in
Figure 8 refer to this system. To explain this initially surprising result, we
must recall with Kuhn39 that rotational diffusion is always a possible path
to dipole relaxation, as is indeed obvious for a perfectly rigid chain. In
general, we may imagine an equivalent circuit in which the local modes for
relaxation of Type B dipole orientation and the rotational diffusion mech-
anism are represented by two resistors in parallel. The observable relaxation
time is then the harmonic mean of those for the two separate mechanisms,
and of course in most situations one of these will be sufficiently faster than the
other to dominate the behaviour. Since the rotational r is proportional to
M[j], this process must become too slow for any flexible chain at sufficiently
high M, and for most chains this will already come true at rather small
molecular weights. The sloping dashed lines in Figure 8 are those predicted
from Eq. (9) for rotational—diffusion relaxation, and it is seen that for
poly(ethylene oxide), which we recall as kinetically very flexible, the local
mode is the faster process at all molecular weights above 1 O, while for the
polymer of p-chlorostyrene in benzene we might encounter the cross-over
range near M 1 0, where we have placed a question mark in the figure.
For the sulphone, however, the cross-over must start only at molecular
weights above 106, and the local mechanism cannot have a value of much
smaller than one millisecond. Thus for this polymer both Type A and
Type B polarization relaxes at Ti' for molecular weights of a million or
lower. Chain models suggest that rotation about the carbon—sulphur bonds
may be very difficult, but that the carbon—carbon bond might be reasonably
labile. But we recall that local relaxation requires two coaxial labile bonds
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(or some other form of labile conformational defect), and this may be the
crucial matter for the polysulphone chain.

Accurate experimental confirmation of the foregoing picture would
require relaxation data for good fractions, preferably of pure Type B
chains, over a range of molecular weights wide enough to span the entire
transition region from rotational diffusion to local relaxation. To the author's
knowledge, such data are not yet available, but some results of Davis65 on
three samples of poly(p-chlorostyrene) in the very viscous solvent o-terphenyl
are at least suggestive and are displayed as the three filled circles in Figure 8.
If our interpretation of these data is correct, a large participation of solvent
in the local mechanism is also demonstrated, by comparison with the data
for the same polymer in benzene. In the case of poly(ethylene oxide), a
dependence of longitudinal n.m.r. relaxation time on M appears53 at
molecular weights below about 400, just at the expected value from Figure 8.
The study of p-halostyrene polymers is being continued in our laboratory,
in the hopes of supplying more adequate experimental evidence on this
question.-

Whether or not the preceding discussion of experimental results is correct,
it would seem purely on conceptual grounds that a finite upper limit to the
rate of local relaxation should be provided in formal theories of chain
dynamics. The models of Rouse and Zimm cannot easily be extended in this
way: the introduction of any physically meaningful "internal viscosity"
seems sure to produce serious mixing of the normal modes, perhaps rendering
these far from convenient as a basis for perturbation23 treatment. Further
investigation is needed.
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