KEY HEAT OF FORMATION DATA

H. A. SKINNER

Chemistry Department, University of Manchester, U.K.

INTRODUCTION

Key heat of formation data might be defined as those which are important not only in themselves, but also because they serve as stepping-stones in the determination of the heats of formation of numerous other compounds. Such "key data" exist because the thermochemist is usually obliged to determine the heat of formation of a given compound indirectly: the direct measurement of the heat of synthesis of a compound from its constituent elements is only occasionally a practicable proposition. Typical indirect methods include those in which the compound is chemically transformed into "simpler" substances, or alternatively is synthesized from "simpler" starting substances; in either event, these "simpler" substances become of key importance thermochemically.

The most widely used indirect method, especially for organic compounds, is that of combustion in oxygen, whereby the compound is transformed into the oxides or oxyacids of its constituent elements: the first large group of "key substances" thus includes the oxides of the common elements and the common oxyacids—e.g. HNO₃, H₂SO₄, H₃PO₄, H₃BO₃. The halogen acids, HF and HCl, as combustion products of organic fluorine- and chlorine-containing compounds, also belong to this group. Combustion in fluorine gas now presents itself as a major thermochemical method for inorganic substances, thus elevating the fluorides of the common elements into the "key substance" category.

Reactions of thermochemical importance other than combustion include hydrolysis, oxidation and reduction, double decomposition and replacement reactions in solution, complex formation, and addition reactions of various types. The reagents required for these investigations include acids, alkalis, oxidizing and reducing agents, donor solvents and other specific reagents: accurate heat of formation data for all these are clearly of key importance in reaction calorimetry.

The publication in 1952 of the extensive compilation of thermochemical data entitled "Selected Values of Chemical Thermodynamic Properties" (Circular 500 of the National Bureau of Standards, Washington D.C.) represents the most complete effort so far to prepare a self-consistent table of heats of formation of chemical substances. It is, of course, recognized that this task is a continuing one, and that revision will be required constantly, as new and more accurate data come into being. Evidently the first requirement for stability and self-consistency in master tables is the existence of a set of accurate "key data" upon which many of the rest ultimately depend. It now seems that several "key data" adopted in Circular 500 should be revised, in some cases by substantial amounts. These are examined in this
The heats of formation of the oxides of the majority of the elements have been obtained mainly from measurements of their heats of combustion in a bomb calorimeter. Certain metals and metalloids do not burn completely under these conditions, making the experimental results difficult to interpret correctly. For this reason, despite careful experimentation, the "best" available heat of formation data for several metal oxides still retain possibilities of error in excess of the published experimental "uncertainty intervals". A case in point is provided by the investigation of Humphrey and King\(^1\) in 1952 of the combustion of silicon in a conventional bomb calorimeter: these authors accepted the manufacturer's statement of purity (99-9 per cent) and analysis of the sample, and corrected for impurities present, and for traces of incomplete combustion by igniting the solid product removed from the bomb to constant weight. Despite these precautions, their measure value, \(\Delta H^\circ_{\text{c}}\) (Si \(\rightarrow\) SiO\(_2\), \(\alpha\)-cristobalite) = \(-209\cdot33 \pm 0\cdot25\) kcal/mole, is now believed to be in error by some 8 kcal/mole. Evidence has since been presented by Golutvin\(^2\) that the analytical method of estimating unburned silicon used by Humphrey and King was misleading and incorrect. Furthermore, it has now transpired that the combustion sample was less pure than claimed by the suppliers.

Chipman\(^3\) subsequently pointed out that experimental data obtained from equilibrium studies on certain high temperature metallurgical reactions involving silica are inconsistent with Humphrey and King's heat of formation for quartz, and that the correct value should be ca. 5 kcal/mole more negative. Decisive evidence is now available from two completely new and independent measurements of \(\Delta H^\circ_{\text{f}}\) (SiO\(_2\), quartz), by Good\(^4\), and by Wise, Margrave, Feder and Hubbard\(^5\).

Good measured the heat of combustion in oxygen of pure silicon admixed with vinylidene fluoride polymer, using a rotating bomb calorimeter containing aqueous HF as solvent. Under these conditions, all the silicon was converted to fluorosilicic acid dissolved in aqueous HF solution. If SiO\(_2\) was formed as a reaction intermediate, it was totally dissolved by the aqueous HF on rotation of the bomb. These experiments gave \(\Delta H = -250\cdot3 \pm 0\cdot3\) kcal/mole for the reaction:

\[
\text{Si(c)} + \text{O}_2(\text{g}) + 47 \text{HF} \cdot 172 \text{H}_2\text{O (liq)} \rightarrow \text{H}_2\text{SiF}_6 \cdot 41 \text{HF} \cdot 174 \text{H}_2\text{O}
\]

On combining this result with King's measurements\(^6\) of the heat of solution of pure quartz in aqueous HF, the value \(\Delta H^\circ_{\text{f}}\) (SiO\(_2\) quartz) = \(-217\cdot5 \pm 0\cdot5\) kcal/mole was derived.

Wise et al. made use of the technique of fluorine bomb calorimetry to measure the heats of combustion in fluorine gas of silicon and of quartz,

\[
(i) \quad \text{Si(c)} + 2\text{F}_2 \rightarrow \text{SiF}_4(\text{g}) \quad \Delta H = -386\cdot02 \pm 0\cdot24
\]

\[
(ii) \quad \text{SiO}_2(\text{quartz}) + 2\text{F}_2 \rightarrow \text{SiF}_4(\text{g}) + \text{O}_2 \quad \Delta H = -168\cdot27 \pm 0\cdot24
\]

114
KEY HEAT OF FORMATION DATA

findingwhence \(\Delta H_f^\circ \) (SiO\(_2\), quartz) = \(-217.75 \pm 0.34\) kcal/mole, in very satisfactory agreement with Good’s result.

The determination of the heat of combustion of boron in oxygen meets similar difficulties to those encountered with silicon, reflected by the published values for \(\Delta H_f^\circ \) of elemental boron which range from \(-270\) to \(-368\) kcal/g-mole B\(_2\)O\(_3\). The recent measurements by Gal’chenko, Kornilov and Skuratov\(^7\) emphasized the difficulty of attaining complete combustion of boron, and drew attention to the inadequacies of simple analytical methods of estimating the extent of combustion. Gal’chenko et al. preheated the boron sample electrically to 1000\(^\circ\) in the bomb to assist the combustion process. This investigation, leading to \(\Delta H_f^\circ \) (B\(_2\)O\(_3\), amorph) = \(-299.1 \pm 1.8\) kcal/mole (from amorphous boron) is perhaps the most convincing effort so far to measure the heat of formation directly.

The most decisive measurement, however, by Good, Månsson and McCullough\(^8\), has been achieved by application of the rotating bomb technique to the combustion of boron in essentially similar manner to that used by Good with silicon. Crystalline boron powder, admixed with vinylidene fluoride polymer, was burned in oxygen in a rotating bomb, which contained

<table>
<thead>
<tr>
<th>Oxide</th>
<th>(\Delta H_f^\circ) (kcal/mole)</th>
<th>New value</th>
<th>Ref.</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{BeO (c)})</td>
<td>-146.0</td>
<td>-143.1 ± 0.1</td>
<td>9</td>
<td>BC</td>
</tr>
<tr>
<td>(\text{BeO (c)})</td>
<td>-302.0</td>
<td>-304.10 ± 0.41(^a)</td>
<td>8</td>
<td>RBC</td>
</tr>
<tr>
<td>(\text{B}_2\text{O}_3) (amorph)</td>
<td>-297.6</td>
<td>-299.74 ± 0.40(^b)</td>
<td>8</td>
<td>RBC</td>
</tr>
<tr>
<td>(\text{Al}_2\text{O}_3) (corundum)</td>
<td>-309.09</td>
<td>-400.48 ± 0.25</td>
<td>10</td>
<td>BC</td>
</tr>
<tr>
<td>(\text{SiO}_2) (quartz)</td>
<td>-205.4</td>
<td>-217.5 ± 0.5</td>
<td>4</td>
<td>RBC</td>
</tr>
<tr>
<td>(\text{P}_2\text{O}_5) (c, hex)</td>
<td>-720</td>
<td>-713.2 ± 1.0(^b)</td>
<td>11</td>
<td>BC</td>
</tr>
<tr>
<td>(\text{TiO}_2) (rutilic)</td>
<td>-218</td>
<td>-225.5 ± 0.23</td>
<td>12</td>
<td>BC</td>
</tr>
<tr>
<td>(\text{Cr}_2\text{O}_3) (c, hex)</td>
<td>-269.7</td>
<td>-272.7 ± 0.4</td>
<td>13</td>
<td>BC</td>
</tr>
<tr>
<td>(\text{NiO}) (c)</td>
<td>-57.8</td>
<td>-57.3 ± 0.1</td>
<td>14</td>
<td>BC</td>
</tr>
<tr>
<td>(\text{Ga}_2\text{O}_3) (c, (\beta))</td>
<td>-258</td>
<td>-261.05 ± 0.3</td>
<td>15</td>
<td>BC</td>
</tr>
<tr>
<td>(\text{GeO}_2) (c, hex)</td>
<td>-129.08 ± 0.13(^b)</td>
<td>16</td>
<td>BC</td>
<td></td>
</tr>
<tr>
<td>(\text{GeO}_2) (glass)</td>
<td>-128.3</td>
<td>-125.8 ± 0.15(^c)</td>
<td>16</td>
<td>BC</td>
</tr>
<tr>
<td>(\text{SeO}_2) (c)</td>
<td>-55.0</td>
<td>-57.5 ± 1.0(^b)</td>
<td>17</td>
<td>BC</td>
</tr>
<tr>
<td>(\text{ZrO}_2) (c, monoclinic)</td>
<td>-258.2</td>
<td>-261.5 ± 0.2</td>
<td>18</td>
<td>BC</td>
</tr>
<tr>
<td>(\text{Nb}_2\text{O}_5) (c, (\beta))</td>
<td>-463.2</td>
<td>-455±2 ± 0.6</td>
<td>18</td>
<td>BC</td>
</tr>
<tr>
<td>(\text{MoO}_3) (c)</td>
<td>-180.33</td>
<td>-178.16 ± 0.11</td>
<td>10</td>
<td>BC</td>
</tr>
<tr>
<td>(\text{In}_2\text{O}_3) (c)</td>
<td>-222.5</td>
<td>-221.27 ± 0.4</td>
<td>19</td>
<td>BC</td>
</tr>
<tr>
<td>(\text{Sb}_2\text{O}_3) (c, orthorh)</td>
<td>-168.4</td>
<td>-169.4 ± 0.7</td>
<td>20</td>
<td>BC</td>
</tr>
<tr>
<td>(\text{Sb}_2\text{O}_3) (c)</td>
<td>-214</td>
<td>-216.9 ± 1.1</td>
<td>20</td>
<td>BC</td>
</tr>
<tr>
<td>(\text{Te}_2\text{O}_3) (c)</td>
<td>-77.69</td>
<td>-76.9 ± 1.2</td>
<td>21</td>
<td>BC</td>
</tr>
<tr>
<td>(\text{Ta}_2\text{O}_3) (c)</td>
<td>-499.9</td>
<td>-488.8 ± 0.5</td>
<td>18</td>
<td>BC</td>
</tr>
<tr>
<td>(\text{WO}_2) (c)</td>
<td>-200.84</td>
<td>-201.46 ± 0.20</td>
<td>22</td>
<td>BC</td>
</tr>
<tr>
<td>(\text{Bi}_2\text{O}_3) (c)</td>
<td>-137.9</td>
<td>-137.16 ± 0.3</td>
<td>23</td>
<td>BC</td>
</tr>
<tr>
<td>(\text{ThO}_2) (c)</td>
<td>-292</td>
<td>-293.2 ± 0.4</td>
<td>24</td>
<td>BC</td>
</tr>
<tr>
<td>(\text{U}_2\text{O}_8) (c)</td>
<td>-898</td>
<td>-853.5 ± 1.6</td>
<td>24</td>
<td>BC</td>
</tr>
</tbody>
</table>

BC: Combustion in a conventional bomb calorimeter in O\(_2\) under pressure (30 ± 15 atm)

RBC: Combustion in rotating bomb calorimeter, containingaq. HF solvent

FBG: Combustion in frutine bomb-calorimeter

\(^a\): From crystalline B

\(^b\): From white B

\(^c\): From crystalline Ge

\(^d\): From amorphous Se

115
aqueous HF as solvent for the combustion products. Solid oxidation products were not found, the boric oxide and/or boron fluorides initially formed dissolving completely in the HF solution to form aqueous HBF₄. Combustion of boron was complete under these conditions (30 atm O₂ initial pressure). The measurements gave ΔH°C = −173·41 ± 0·20 kcal/g-atom for the combustion reaction:

\[
\text{B(c)} + 0.75 \text{O}_2\text{(g)} + 18.674 \text{HF}, 57.219 \text{H}_2\text{O (liq)} \rightarrow \text{HBF}_4, 14.674 \text{HF}, 58.719 \text{H}_2\text{O (liq)}
\]

which, in conjunction with separate measurements on the heat of solution of crystalline boric acid in aqueous HF solution, and the heat of hydration of boric oxide, lead finally to ΔH° (B₂O₃ amorph) = −299·74 ± 0·40 kcal/mole, and ΔH° (B₂O₃ cryst) = −304·10 ± 0·41 kcal/mole, both these values being with reference to crystalline boron.

Table 1 lists heat of formation data obtained during the past decade for a number of oxides, each of which differs from the recommended value in Circular 500. The quoted error limits attached to the new values are those given by the authors themselves.

The oxides of the metals listed in Table 1 are solids, and it is pertinent to ask if the extent of combustion of the metals concerned was accurately determined in each case. The published reports state:

Be → BeO: “Suitable analysis showed combustion was complete”

Al → Al₂O₃: Combustion 99·14–99·66 per cent complete, determined from the weight of alumina formed

Cr → Cr₂O₃: 95·3–98·9 per cent complete, determined from the weight of product formed

Ni → NiO: 87·3–92·9 per cent complete, determined from the weight of product formed

Ge → GeO₂: Combustion 97·8–98·8 per cent complete, from weight increase; paraffin was required as kindling agent

Ga → Ga₂O₃: Combustion complete—no weight increase on igniting the product

Se → SeO₂: Unburnt Se estimated by dissolving the product in water, and separating insoluble Se residue

Zr → ZrO₂: Combustion complete—no weight increase on ignition

Nb → Nb₂O₅: 97·6–99·4 per cent complete, from weight increase on igniting the products in O₂

Mo → MoO₃: 84·2–93·4 per cent from weight increase on ignition

In → In₂O₃: 97·6–98·6 per cent, from H₂ volume produced on treatment of products with 6N HCl

Sb → Sb₂O₃ + Sb₂O₄: Composition of product determined from mass of product formed
KEY HEAT OF FORMATION DATA

Te → TeO₂: Combustion aid, graphite; analysis used to determine unburnt C and Te; combustion of Te nearly complete

Ta → Ta₂O₅: 97.23–99.99 per cent complete, from increase in weight of products on ignition at 700°

Th → ThO₂: 99.74–99.99 per cent complete, from volume of H₂ evolved on dissolving products in 6N HCl

U + UO₂ → U₃O₈: Combustion complete if the U metal admixed with UO₂

Thus complete combustion was attained only with Be, Ti, Ga, and Zr; Sb gave a mixture of oxides, and U needed UO₂ as an aid to complete combustion. Otherwise combustions were incomplete, and corrections to allow for this had to be made. There is no reason to suspect inaccuracy in the combustion analyses, but the need for corrections detracts from the certainty of the results. More decisive ΔHᵣ° values for several of these oxides should become available with the application of fluorine bomb calorimetry and rotating bomb methods.

The redetermination of the heat of combustion of phosphorus by Holmes¹¹ is welcome, the early measurements of Giran²⁵ lacking conviction. The new value, ΔHᵣ° (P₄O₁₀, c) = −713.2 ± 1.0 kcal/mole, was obtained from the heat of combustion in O₂ of α-white phosphorus, coated with a film of Perspex (polymethylmethacrylate). Corrections were made for the partial hydration of the P₄O₁₀ by the water formed on combustion of the protective Perspex coating, and for traces of unburnt phosphorus remaining in the crucible (estimated by oxidation with I₂ or by HNO₃). These studies ought now to be followed up by investigations of the heat of combustion of phosphorus using rotating bomb calorimetry: there is every reason to expect that a sharper value could be obtained.

The value quoted in Circular 500 for ΔHᵣ° (GeO₂, amorph) is based on heats of combustion measured by Becker and Roth²⁶ and Hahn and Juza²⁷. Although these investigators agreed well with one another, in both cases corrections for incomplete combustion of the order 1–2 per cent were necessary. Recently, Jolly and Latimer²⁸ measured the heat of solution of germanium in hypochlorite, leading to ΔH = −160.2 ± 1.8 kcal/mole for the reaction: Ge(c) + 2ClO⁻ (aq) → GeO₂ (amorph) + 2Cl⁻ (aq). Combination of this with ΔHᵣ° (ClO⁻ ,aq) = −26.2 ± 0.1 kcal/mole²⁹, gives ΔHᵣ° (GeO₂, amorph) = −132.6 ± 2 kcal/mole.

New measurements by Mah and Adami¹⁶ of the heat of combustion of germanium have provided a value for the heat of formation which differs from earlier results, and although seemingly satisfactory the new value needs confirmation before doubt is removed in this case.

Re-investigation of the heats of formation of both As₂O₃ and As₂O₅ is needed in view of measurements by Bjellerup, Sunner and Wadsö³⁰, and by Sunner and Thorén³⁰*, of the heat of oxidation of aqueous As₂O₃ by bromine and by chlorine

As₂O₃,aq + 2X₂ + 2H₂O (aq) → As₂O₅,aq + 4HX,aq
ΔH = −56.61 ± 0.11 kcal/mole, when X₂ = Br₂ (liq)
ΔH = −100.09 ± 0.08 kcal/mole, when X₂ = Cl₂ (g)
Combination of these data with the heats of formation of HBr and HCl (infinite dilution) gives -76.89 and -76.65 kcal/mole respectively for the difference $\Delta H_f^\circ [\text{As}_2\text{O}_3, \text{aq}] - \Delta H_f^\circ [\text{As}_2\text{O}_5, \text{aq}]$: the value from Circular 500 for this same difference is -74.9 kcal/mole. Whether the error lies in the recommended value for As$_2$O$_3$ or for As$_2$O$_5$, or both, is difficult to decide, since neither is convincing in itself.

ACIDS

New investigations since 1952 have led to revised values for the heats of formation of H$_2$SO$_4$, H$_3$BO$_3$, H$_3$PO$_4$, H$_3$PO$_3$, and HBr: the value for HCl has been confirmed, and that for HF shown to be doubtful and in need of further investigation. The revised values are briefly discussed below.

Sulphuric acid

The rotating bomb technique has been applied at Bartlesville and at Lund to measure the heat of formation of dilute sulphuric acid by direct combustion of rhombic sulphur.

For the reaction

$$S(\text{c, rhombic}) + 3/2 \text{O}_2(\text{g}) + 116 \text{H}_2\text{O} \text{(liq)} \rightarrow \text{H}_2\text{SO}_4 \cdot 115 \text{H}_2\text{O} \text{(liq)}$$

Good, Lacina and McCullough31 obtained $\Delta H_f^\circ = -143.85 \pm 0.06$ kcal/mole, corresponding to $\Delta H_f^\circ (\text{H}_2\text{SO}_4 \cdot 115 \text{H}_2\text{O}) = -212.17 \pm 0.06$ kcal/mole.

The results of Månsson and Sunner31a are in close agreement. The mean value from the two independent investigations, $\Delta H_f^\circ = -212.20 \pm 0.05$ kcal/mole differs by ca. $\frac{1}{2}$ kcal/mole from that given in Circular 500 ($\Delta H_f^\circ = -212.63$ kcal/mole).

Boric acid

Reference has already been made (p. 115) to the measurement by Good et al.3 of the heat of combustion of crystalline boron by the rotating bomb method: combination of this with the heat of solution of boric acid in aqueous HF yields the value $\Delta H_f^\circ (\text{H}_3\text{BO}_3, \text{c}) = -261.47 \pm 0.20$ kcal/mole. This relates to formation from crystalline boron, and is to be preferred to earlier values obtained by reaction calorimetric studies, which refer ultimately to the rather ill-defined “amorphous” boron.

The earlier values derive from measurements of the heats of hydrolysis and thermal decomposition of gaseous diborane, and of the heats of hydrolysis and synthesis of boron trichloride. The relevant data are listed below:

(a) *Thermal decomposition of diborane*

$$\text{B}_2\text{H}_6(\text{g}) \rightarrow 2\text{B} \text{(amorph)} + 3\text{H}_2(\text{g})$$

$\Delta H^\circ = -6.73 \pm 0.56$ kcal/mole (Prosen et al.32)

$\Delta H^\circ = -5.0 \pm 0.4$ kcal/mole (Gunn and Green33)

118
(b) Hydrolysis of diborane
\[\text{B}_2\text{H}_6 \text{ (g)} + 6 \text{H}_2\text{O} \text{ (liq)} + 2000 \text{H}_2\text{O} \text{ (liq)} \rightarrow 2[\text{H}_3\text{BO}_3\cdot1000 \text{H}_2\text{O}, \text{soln}] + 6\text{H}_2 \text{ (g)} \]
\[\Delta H^\circ = -111.46 \pm 0.46 \text{ kcal/mole} \text{ (Prosen et al.34)} \]
\[\Delta H^\circ = -112.22 \pm 0.10 \text{ kcal/mole} \text{ (Gunn and Green35)} \]

(c) Synthesis of boron trichloride
\[\text{B} \text{ (amorph)} + 3/2 \text{Cl}_2 \text{ (g)} \rightarrow \text{BCl}_3 \text{ (liq)} \]
\[\Delta H^\circ = -103.11 \pm 0.34 \text{ kcal/mole} \text{ (Johnson et al.36)} \]
\[\Delta H^\circ = -102.9 \pm 0.6 \text{ kcal/mole} \text{ (Gal’chenko et al.37)} \]

(d) Hydrolysis of boron trichloride
\[\text{BCl}_3 \text{ (liq)} + 1303 \text{H}_2\text{O} \text{ (liq)} \rightarrow [\text{H}_3\text{BO}_3\cdot1000 \text{H}_2\text{O}, \text{soln}] + 3[\text{HCl}\cdot100 \text{H}_2\text{O}, \text{soln}] \]
\[\Delta H^\circ = -68.14 \pm 0.10 \text{ kcal/mole} \text{ (Gunn and Green38)} \]

(e) Solution of boric acid
\[\text{H}_3\text{BO}_3 \text{ (c)} + 1000 \text{H}_2\text{O} \text{ (liq)} \rightarrow [\text{H}_3\text{BO}_3\cdot1000 \text{H}_2\text{O}, \text{soln}] \]
\[\Delta H^\circ = 5.24 \text{ kcal/mole} 38 \]

Combination of (a) and (b) with (e), choosing Prosen’s \(\Delta H^\circ \) for (a) and Gunn’s \(\Delta H^\circ \) for (b), gives

\[\Delta H^\circ \text{ (H}_3\text{BO}_3, \text{ c)} = -262.94 \pm 0.30 \text{ kcal/mole}; \]

Combination of (c) and (d) with (e), choosing Johnson’s value of \(\Delta H^\circ \) for (c), gives

\[\Delta H^\circ \text{ (H}_3\text{BO}_3, \text{ c)} = -262.30 \pm 0.4 \text{ kcal/mole}. \]

Both these determinations relate to formation from amorphous boron.

The heat of transition from crystalline to amorphous boron has not been measured accurately as yet, so that strict comparison between the reaction calorimetric values and Good’s value for boric acid cannot be made. Gross et al.39 measured the heat of fluorination of two samples of boron, one of these being a high purity zone-refined crystalline form, the other the amorphous powder obtained by thermal decomposition of diborane: the difference between the measured heats of reaction was 0.8 kcal/mole. Accepting this figure, provisionally, for the difference between amorphous and crystalline boron, the value \(\Delta H^\circ \text{ (H}_3\text{BO}_3, \text{ c)} = -261.50 \pm 0.4 \text{ kcal/mole} \) (with respect to crystalline boron) is derived from the hydrolysis of \(\text{BCl}_3 \), and \(-262.14 \pm 0.3 \text{ kcal/mole} \) from the hydrolysis of \(\text{B}_2\text{H}_6 \); the former is in excellent agreement with Good’s value of \(-261.47 \pm 0.2 \), from combustion measurements.

Phosphoric acid

New measurements of the heats of solution of \(\text{P}_4\text{O}_{10} \) and of \(\text{H}_3\text{PO}_4 \) by Holmes11, in conjunction with the redetermination of \(\Delta H^\circ \text{ (P}_4\text{O}_{10}, \text{ c)} \) already mentioned, yield the value

\[\Delta H^\circ \text{ (H}_3\text{PO}_4, \text{ c)} = -305.7 \pm 0.3 \text{ kcal/mole}. \]

The value given in Circular 500 is \(-306.2 \text{ kcal/mole} \).
Phosphorous acid

Neale and Williams40 measured the heat of the reaction

\[
\text{PCl}_3 \text{ (liq)} + \text{Br}_2 \text{ (aq)} + 4\text{H}_2\text{O} \text{ (liq)} \rightarrow \text{H}_3\text{PO}_4 \text{ (aq)} + 3\text{HCl} \text{ (aq)} + 2\text{HBr} \text{ (aq)}
\]

finding $\Delta H^\circ = -137.9 \pm 0.4$ kcal/mole: Charnley and Skinner41 obtained $\Delta H^\circ = -67.7 \pm 0.4$ kcal/mole for the heat of hydrolysis

\[
\text{PCl}_3 \text{ (liq)} + 3\text{H}_2\text{O} \text{ (liq)} + \text{aq} \rightarrow \text{H}_3\text{PO}_3 \text{ (aq)} + 3\text{HCl} \text{ (aq)}
\]

Combining these together gives $\Delta H^\circ = -70.2 \pm 0.6$ kcal/mole for the heat of the reaction

\[
\text{H}_3\text{PO}_3 \text{ (aq)} + \text{Br}_2 \text{ (aq)} + \text{H}_2\text{O} \text{ (liq)} \rightarrow \text{H}_3\text{PO}_4 \text{ (aq)} + 2\text{HBr} \text{ (aq)}
\]

Whence, accepting Holmes111 $\Delta H_f^\circ \text{ (H}_3\text{PO}_4, \text{aq}) = -308.1 \pm 0.5$ kcal/mole, and $\Delta H_f^\circ \text{ (HBr, \text{aq})} = -29.0$ kcal/mole (\textit{v.i.}), one obtains $\Delta H_f^\circ \text{ (H}_3\text{PO}_3, \text{aq}) = -226.5 \pm 0.8$ kcal/mole. Neale and Williams state that $\Delta H_{\text{soln}}^\circ$ of crystalline H$_3$PO$_3$ in aq. HCl is ca. 1 kcal/mole; hence, $\Delta H_f^\circ \text{ (H}_3\text{PO}_3, \text{c}) = -227.5$ kcal/mole. This determination cannot be classified as "final", but the new value is more firmly based than the Circular 500 figure of -232.2 kcal/mole.

Hydrobromic acid

Measurements by Lacher, Casali and Park42 of the direct heat of combination of the elements indicated that the Circular 500 value for HBr (g) is correct within limits of ± 0.2 kcal/mole. Measurements by Johnson and Sunner43 of the heat of reaction of bromine with SO$_2$ to form H$_2$SO$_4$ (aq) and HBr (aq) gave $\Delta H_f^\circ \text{ (HBr, 1250 H}_2\text{O}) = -29.00$ kcal/mole, as compared with -28.81 of Circ. 500. The new value is based on the revised ΔH_f° for sulphuric acid. Similar studies by Sunner and Thoren30 support a change of ca. 0.2 kcal/mole in the heat of formation of HBr. Johnson and Ambrose44 from measurements of the heat of reaction of chlorine with SO$_2$ to form H$_2$SO$_4$ (aq) and HCl (aq) have confirmed the value in Circular 500 for $\Delta H_f^\circ \text{ (HCl, \text{aq})}.$

Hydrofluoric acid

Measurements of the heat of combustion of ammonia in the constant-pressure fluorine flame calorimeter by Armstrong and Jessup45 gave $\Delta H_f^\circ \text{ (HF, g) = -64.63 kcal/mole (} \pm 0.07\text{): the non-ideality corrections for HF gas were based on the \textit{PVT} data of Strohmeier and Briegleb46. The measurements by von Wartenberg and Schütz47 of the heat of reaction of fluorine with excess hydrogen were made at 100° to avoid the non-ideality corrections, and gave -64.45 ± 0.1 kcal/mole for $\Delta H_f^\circ \text{ (HF, g)$. Further evidence that the heat of formation is more negative than the Circular 500 value of } -64.2 \text{ kcal/mole has been presented by Feder, Hubbard, Wise and Margrave48: these authors obtained } \Delta H_f^\circ \text{ (HF, g) = -64.92 \pm 0.12 kcal/mole by combining the}\)
KEY HEAT OF FORMATION DATA

measured heat of combustion in fluorine of silica with the heat of hydrolysis of SiF₄, as determined from the equilibrium studies of Lenfestey et al.,

\[
\begin{align*}
(i) \quad \text{SiO}_2 \text{ (cristobalite)} + 2\text{F}_2 (g) & \rightarrow \text{SiF}_4 (g) + \text{O}_2 (g) \\
\Delta H^\circ &= -168.61 \text{ kcal}
\end{align*}
\]

\[
\begin{align*}
(ii) \quad \text{SiF}_4 (g) + 2\text{H}_2\text{O} (g) & \rightarrow \text{SiO}_2 \text{ (cristobalite)} + 4\text{HF} (g) \\
\Delta H^\circ &= 24.53 \text{ kcal}
\end{align*}
\]

whence:

\[
\begin{align*}
(iii) \quad 2\text{F}_2 (g) + 2\text{H}_2\text{O} (g) & \rightarrow 4\text{HF} (g) + \text{O}_2 (g) \\
\Delta H^\circ &= -144.08 \text{ kcal}
\end{align*}
\]

If the calorimetrically measured heat of hydrolysis of SiF₄ is used in the above scheme in place of step (ii), the value derived for \(\Delta H^\circ\) (HF, g) is even more negative: this raises an additional query concerning the accepted heat of solution HF in water.

Evidently further investigations are needed, but meanwhile the choice \(\Delta H^\circ = -64.7 = 0.5\) kcal/mole seems preferable to that recommended in Circular 500.

Fluorides

Table 2 summarizes recent heat of formation measurements on inorganic fluorides, several of which were obtained by fluorine bomb calorimetry. It is noticeable that the new values are generally more negative than found in earlier studies.

<table>
<thead>
<tr>
<th>Fluoride</th>
<th>(\Delta H^\circ) (kcal/mole)</th>
<th>Ref.</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{HF} (g))</td>
<td>-64.2</td>
<td>-64.7 ± 0.5</td>
<td>51</td>
</tr>
<tr>
<td>(\text{BeF}_2 (c))</td>
<td>-264.4</td>
<td>-241.2 ± 2.5</td>
<td>17</td>
</tr>
<tr>
<td>(\text{BF}_3 (g))</td>
<td>-162.2</td>
<td>-219.9 ± 2</td>
<td>53, 54</td>
</tr>
<tr>
<td>(\text{CF}_4 (g))</td>
<td>-338.5</td>
<td>-307.2 ± 2.3</td>
<td>55</td>
</tr>
<tr>
<td>(\text{NF}_3 (g))</td>
<td>-27.0</td>
<td>-29.4 ± 2.1</td>
<td>56</td>
</tr>
<tr>
<td>(\text{MgF}_2 (c))</td>
<td>293.2</td>
<td>-265.0 ± 0.7</td>
<td>57</td>
</tr>
<tr>
<td>(\text{AlF}_3 (c))</td>
<td>311.0</td>
<td>-366.2 ± 0.8</td>
<td>57a</td>
</tr>
<tr>
<td>(\text{SiF}_4 (g))</td>
<td>-370.0</td>
<td>-366.0 ± 0.2</td>
<td>58</td>
</tr>
<tr>
<td>(\text{PF}_3 (g))</td>
<td>260.1</td>
<td>-386.0 ± 0.7</td>
<td>59</td>
</tr>
<tr>
<td>(\text{PF}_5 (g))</td>
<td>398.4</td>
<td>-218.3 ± 0.38</td>
<td>39</td>
</tr>
<tr>
<td>(\text{SF}_3 (g))</td>
<td>298.5</td>
<td>-288.5 ± 0.7</td>
<td>40</td>
</tr>
<tr>
<td>(\text{SF}_4 (g))</td>
<td>217.4</td>
<td>-171.7 ± 2.5</td>
<td>41</td>
</tr>
<tr>
<td>(\text{TiF}_4 (c))</td>
<td>298.0</td>
<td>-394.2 ± 0.25</td>
<td>42</td>
</tr>
<tr>
<td>(\text{BrF}_3 (g))</td>
<td>120.5</td>
<td>-102.5 ± 0.2</td>
<td>43</td>
</tr>
<tr>
<td>(\text{ZrF}_4 (c, δ))</td>
<td>-445.2</td>
<td>-456.8 ± 0.25</td>
<td>44</td>
</tr>
<tr>
<td>(\text{NbF}_5 (c))</td>
<td>-432.0</td>
<td>-432.0 ± 0.10</td>
<td>45</td>
</tr>
<tr>
<td>(\text{MoF}_5 (g))</td>
<td>-372.35</td>
<td>-372.35 ± 0.22</td>
<td>46</td>
</tr>
<tr>
<td>(\text{IF}_5 (lq))</td>
<td>-205.1</td>
<td>-205.1 ± 1.5</td>
<td>47</td>
</tr>
<tr>
<td>(\text{HfF}_6 (c))</td>
<td>-461.40</td>
<td>-461.40 ± 0.85</td>
<td>48</td>
</tr>
<tr>
<td>(\text{WF}_6 (lq))</td>
<td>-422.0</td>
<td>-422.0 ± 4</td>
<td>49</td>
</tr>
</tbody>
</table>

FBC: Fluorine bomb calorimetry
FFC: Fluorine flame calorimetry
RBC: Rotating bomb calorimetry
RC: Reaction calorimetry
H. A. SKINNER

The ΔH° values for BeF$_2$, CF$_4$, NF$_3$, SF$_4$, NbF$_5$, IF$_5$ and WF$_6$ were derived from heats of reactions in which hydrofluoric acid was involved as reactant or product of reaction; the values may thus be due for revision should the doubts associated with ΔH° (HF) prove to be well-founded. In this connexion, Armstrong53 has already pointed out that the present situation in respect of ΔH° (CF$_4$) and ΔH° (HF) is far from satisfactory; both these are “key” data vital to the correct interpretation of heats of combustion of organic fluorine compounds, and ought to be known with an accuracy comparable to that attained for ΔH° (CO$_2$) and ΔH° (H$_2$O).

However, the measurements so far reported for ΔH° (CF$_4$) depend directly on the value accepted for ΔH° (HF). The combustion studies of Good, Scott and Waddington55, on polytetrafluoroethylene–hydrocarbon oil mixtures using rotating bomb calorimetry, provided an indirect measure of the heat of hydrolysis of CF$_4$ \textit{viz}.

CF$_4$ (g) + 42 H$_2$O (liq) \rightarrow CO$_2$ (g) + 4 HF·10 H$_2$O (liq)

$\Delta H^\circ = -41.5 \pm 1.0$ kcal/mole

from which ΔH° (CF$_4$, g) was derived; the derivation involves ΔH° (HF·10 H$_2$O), four times, so that an error of $\pm x$ in the latter introduces error $\pm 4x$ in ΔH° (CF$_4$, g). The same is true of the measurements by Jessup et al.54 on the reaction

CH$_4$ (g) + 4F$_2$ (g) \rightarrow CF$_4$ (g) + 4HF (g)

and of Vorobiev and Skuratov56 on the reaction

CF$_4$ (g) + 4Na (c) \rightarrow 4NaF (c) + C (c)

(since ΔH° (NaF, c) was determined from the heat of neutralization of hydrofluoric acid by caustic soda). It would help to have a more direct determination of the heat of formation of CF$_4$ either by combustion of graphite, or possibly of polytetrafluoroethylene, in fluorine.

ALKALIS

New measurements by Gunn and Green68 of the heats of reaction of the alkali metals (Li, Na, and K) with water, using their “rocking bomb” reaction calorimeter, have provided improved heat of formation data for the aqueous hydroxides, \textit{viz}

ΔH° (kcal/mole)

\begin{align*}
\text{LiOH, } \infty \text{ H}_2\text{O} &\quad -121.572 \pm 0.02 &\quad -121.511 \\
\text{NaOH, } \infty \text{ H}_2\text{O} &\quad -112.483 \pm 0.006 &\quad -112.236 \\
\text{KOH, } \infty \text{ H}_2\text{O} &\quad -115.323 \pm 0.01 &\quad -115.0
\end{align*}

The new values agree fairly well with other recent measurements by Ketchen and Wallace69, and by Messer, Fasolani and Thalmayer70. The changes from the Circular 500 values are slight, but significant in the field of solution calorimetry.

122
KEY HEAT OF FORMATION DATA

OXIDIZING AND REDUCING AGENTS

Heat of formation data have been reported recently for several commonly used oxidizing and reducing agents; these are summarized in Table 3, and discussed individually below.

Diborane

The "best" value is chosen by combining the heat of hydrolysis of diborane gas, measured by Gunn and Green, with the heat of formation of boric acid obtained by Good et al. The chosen value is more negative than indicated by measurements of the heat of thermal decomposition, and the reason for the divergence is not yet fully explained.

Borohydrides of Li, Na and K

Measurements of the heats of hydrolysis in hydrochloric acid of LiBH₄, NaBH₄ and KBH₄ have been reported by Davis, Mason and Stegeman and by Johnson, Schumm, Wilson and Prosen: the derived ΔHᵅ₀ values listed in Table 3 are based on Good's value for the heat of formation of boric acid.

Lithium aluminium hydride

Davis et al. measured the heat of reaction with aqueous hydrochloric acid; the derived ΔHᵅ₀ in Table 3 assumes Coughlin's value for the heat of formation of aluminium chloride (Table 4).

Lithium hydride

Gunn and Green measured the heat of hydrolysis of LiH.

Titanous chloride

Clifton and MacWood measured the heat of solution of TiCl₃ (c) and of TiCl₄ (liq) in HCl/FeCl₃ solution. The derived ΔHᵅ₀ for TiCl₃ depends on the value accepted for ΔHᵅ₀ of TiCl₄ (see Table 4).

Benzoquinone–quinol

The heats of combustion in O₂ were measured by Pilcher and Sutton.

Hydrogen peroxide

Giguère et al. measured the heat of decomposition, H₂O₂ → H₂O + ½O₂, catalysed by colloidal platinum.

Sodium peroxide

Gilles and Margrave measured the heat of hydrolysis in the presence of MnO₂ as catalyst.

Potassium and sodium chlorates

Vorobiev et al. measured the heat of thermal decomposition

\[\text{MCIO}_3 \ (c) \rightarrow \text{MCl} \ (c) + \frac{1}{2} \text{O}_2 \ (M = \text{Na, K}) \]
Potassium and sodium perchlorates

Skuratov et al.79 measured the heat of thermal decomposition of the perchlorates of Na, K, and Ba. The heat of thermal decomposition of KCIO$_4$ has also been measured by Johnson and Galliland80, but the agreement with Skuratov was not good: Skuratov has defended his measurements, but further work will be needed to resolve the discrepancy.

Hypochlorite

New measurements of the heat of hydrolysis of Cl$_2$ have been reported by McDonald et al.29

Hypobromite

McDonald and Cobble82 measured the heat of hydrolysis of Br$_2$ in alkaline solution.

Ferric and ferrous chlorides

Koehler and Coughlin83 measured the heat of solution of Fe in hydrochloric acid and the heat of oxidation of ferrous to ferric chloride.

<table>
<thead>
<tr>
<th>Compound</th>
<th>ΔH_f° (kcal/mole)</th>
<th>Ref.</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>B$_2$H$_6$ (g)</td>
<td>7.5</td>
<td>9.53 ± 0.42</td>
<td>35</td>
</tr>
<tr>
<td>LiBH$_4$ (c)</td>
<td>-44.9</td>
<td>-45.37 ± 0.5</td>
<td>71</td>
</tr>
<tr>
<td>NaBH$_4$ (c)</td>
<td>-43.82</td>
<td>-45.05 ± 0.4</td>
<td>71</td>
</tr>
<tr>
<td>KBH$_4$ (c)</td>
<td>$-$</td>
<td>-54.01 ± 0.5</td>
<td>72</td>
</tr>
<tr>
<td>LiAlH$_4$ (c)</td>
<td>-24.2</td>
<td>-26.6 ± 0.4</td>
<td>71</td>
</tr>
<tr>
<td>LiH (c)</td>
<td>-21.61</td>
<td>-21.67 ± 0.03</td>
<td>68</td>
</tr>
<tr>
<td>TiCl$_3$ (c)</td>
<td>-165</td>
<td>-172 ± 1</td>
<td>74</td>
</tr>
<tr>
<td>Quinol (c)</td>
<td>$-$</td>
<td>-87.51 ± 0.28</td>
<td>75</td>
</tr>
<tr>
<td>H$_2$O$_2$ (lq)</td>
<td>-44.84</td>
<td>-44.88 ± 0.03</td>
<td>76</td>
</tr>
<tr>
<td>Na$_2$O$_2$ (c)</td>
<td>-120.6</td>
<td>-122.1 ± 1.2</td>
<td>77</td>
</tr>
<tr>
<td>NaClO$_2$ (c)</td>
<td>-85.73</td>
<td>-85.5 ± 0.3</td>
<td>78</td>
</tr>
<tr>
<td>KClO$_2$ (c)</td>
<td>-93.50</td>
<td>-93.0 ± 0.4</td>
<td>78</td>
</tr>
<tr>
<td>NaClO$_4$ (c)</td>
<td>-92.18</td>
<td>-90.68 ± 0.3</td>
<td>79</td>
</tr>
<tr>
<td>KClO$_4$ (c)</td>
<td>-103.6</td>
<td>-101.9 ± 0.2</td>
<td>81</td>
</tr>
<tr>
<td>ClO$^-$ (aq)</td>
<td>-24.5</td>
<td>-26.2 ± 0.1</td>
<td>29</td>
</tr>
<tr>
<td>BrO$^-$ (aq)</td>
<td>$-$</td>
<td>-23.05 ± 0.5</td>
<td>82</td>
</tr>
<tr>
<td>FeCl$_3$ (c)</td>
<td>-96.8</td>
<td>-95.7 ± 0.2</td>
<td>83</td>
</tr>
</tbody>
</table>

In addition to the data given in Table 3 the following items are also worthy of note.

Ferrous and ferric sulphates

Bewley84 measured the heat of reaction between ferrous ions and hydrogen peroxide in aqueous solution. The author pointed out that the measured heat is not consistent with the values quoted in Circ. 500 for ΔH_f° (FeSO$_4$, aq) and ΔH_f° (Fe$_2$(SO$_4$)$_3$, aq), although in good agreement with the quoted heats of
KEY HEAT OF FORMATION DATA

formation of Fe$^{2+}$ and Fe$^{3+}$ ions in aqueous solution. Bewley implies that the recommended value for ΔH_f° of ferric sulphate is incorrect by a substantial amount.

Ammonium dichromate

Neugebauer and Margrave85 measured the heat of the decomposition

$$(\text{NH}_4)_2 \text{Cr}_2\text{O}_7 (c) \rightarrow \text{Cr}_2\text{O}_3 (c) + \text{N}_2 (g) + 4\text{H}_2\text{O} (\text{liq})$$

from which $\Delta H_f^\circ ((\text{NH}_4)_2 \text{Cr}_2\text{O}_7, c) = -432.1 \text{ kcal/mole}$ is derived if one assumes Mah's value for $\Delta H_f^\circ (\text{Cr}_2\text{O}_3, c)$, and that the chromic oxide formed was the same as that obtained by Mah. Muldrow and Hepler86, from solution calorimetry, obtained -425.0 kcal/mole for the heat of formation of ammonium dichromate: the latter depends on an assumed $\Delta H_f^\circ (\text{CrO}_3, c) = -138.0 \text{ kcal/mole}$. The discrepancy no doubt reflects inaccuracies in the accepted heats of formation of the oxides of chromium, and until these items are better established the heat of formation data on dichromates and chromates remain rather indefinite. Similar remarks apply to the available heat of formation data on permanganates and manganates.

DONOR SOLVENTS

The heats of formation of the following donor solvents (of interest to the thermochemistry of co-ordination complexes) have recently been derived from heat of combustion measurements: dimethyl ether87; diethyl ether88; dibutyl ether89; tetrahydrofuran$^{90, 91}$, tetrahydropyran$^{90-92}$; 1:4-dioxan92; methylamime, dimethylamine, trimethylamine, ethylamine, diethylamine, and triethylamine93; pyrrolidine94; piperidine95; pyridine$^{96, 97}$; picolines$^{96-99}$ and lutidines$^{96, 100}$.

CHLORIDES

Metallic chlorides frequently serve as the starting point for determining the heats of formation of other salts by solution calorimetric methods. In a few cases, the heats of formation of metal chlorides have been measured directly; otherwise, the heats of solution of the metals, or metallic oxides, in hydrochloric acid have been measured. The opportunity for cross-checking of the heats of formation exists in several cases, and ought to be pursued more thoroughly.

Recently determined ΔH_f° values for metallic chlorides are listed in Table 4, in which new data for a few metal bromides are included. Still in need of modern measurement are the heats of formation of AsCl$_3$, SbCl$_3$, SiCl$_4$ and GeCl$_4$, PCl$_3$ and PCl$_5$, in each case preferably by direct synthesis in a calorimeter.

ORGANIC COMPOUNDS

The heats of formation of organic compounds are obtained for the most part from heats of combustion, so that "key data" refer to products of combustion, already described. Reaction and solution calorimetric methods for the study of organic compounds are, however, finding increasing application, and it is
Table 4. ΔH° values for chlorides and bromides

<table>
<thead>
<tr>
<th>Compound</th>
<th>∆H° (kcal/mole)</th>
<th>Ref.</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>BeCl₂ (c)</td>
<td>-122.3</td>
<td>-118.0 ± 0.6</td>
<td>101</td>
</tr>
<tr>
<td>BCl₃ (liq)</td>
<td>-100.0</td>
<td>-102.3 ± 0.3</td>
<td>102</td>
</tr>
<tr>
<td>AlCl₃ (c)</td>
<td>-166.2</td>
<td>-168.6 ± 0.5</td>
<td>35</td>
</tr>
<tr>
<td>PCl₃ (liq)</td>
<td>-81.0</td>
<td>-73.9 ± 1.0</td>
<td>73</td>
</tr>
<tr>
<td>TiCl₄ (liq)</td>
<td>-179.3</td>
<td>-192 ± 1</td>
<td>40</td>
</tr>
<tr>
<td>TiCl₃ (c)</td>
<td>-165</td>
<td>-172 ± 1</td>
<td>103,104</td>
</tr>
<tr>
<td>TiCl₂ (c)</td>
<td>-114</td>
<td>-123.5 ± 1</td>
<td>74,105</td>
</tr>
<tr>
<td>VCl₄ (liq)</td>
<td>-138</td>
<td>-136.2 ± 0.2</td>
<td>106</td>
</tr>
<tr>
<td>VCl₃ (c)</td>
<td>-137</td>
<td>-143 ± 1</td>
<td>107</td>
</tr>
<tr>
<td>VCl₂</td>
<td>-108</td>
<td>-110 ± 1</td>
<td>108</td>
</tr>
<tr>
<td>MnCl₂ (c)</td>
<td>-115.3</td>
<td>-115.2 ± 0.1</td>
<td>109</td>
</tr>
<tr>
<td>FeCl₂ (c)</td>
<td>-96.8</td>
<td>95.7 ± 0.2</td>
<td>83</td>
</tr>
<tr>
<td>FeCl₃ (c)</td>
<td>-81.5</td>
<td>-81.9 ± 0.1</td>
<td>83</td>
</tr>
<tr>
<td>ZrCl₄ (c)</td>
<td>-230</td>
<td>-234.7 ± 0.4</td>
<td>110</td>
</tr>
<tr>
<td>NbCl₅ (c)</td>
<td>-190.6</td>
<td>-190.4 ± 1</td>
<td>111</td>
</tr>
<tr>
<td>NbCl₄ (c)</td>
<td>-166.0</td>
<td>-166.0</td>
<td>112</td>
</tr>
<tr>
<td>MoCl₅ (c)</td>
<td>-90.8</td>
<td>-126</td>
<td>112</td>
</tr>
<tr>
<td>MoCl₃ (c)</td>
<td>-79</td>
<td>-114</td>
<td>113</td>
</tr>
<tr>
<td>MoCl₂ (c)</td>
<td>-65</td>
<td>-94</td>
<td>113</td>
</tr>
<tr>
<td>MoCl₁ (c)</td>
<td>-44</td>
<td>-69</td>
<td>113</td>
</tr>
<tr>
<td>RuCl₃ (c)</td>
<td>-63</td>
<td>-60.5 ± 2</td>
<td>114</td>
</tr>
<tr>
<td>HClO₄ (c)</td>
<td>-236.9</td>
<td>-236.9 ± 0.3</td>
<td>107</td>
</tr>
<tr>
<td>TaCl₃ (c)</td>
<td>-205.5</td>
<td>-205.5 ± 0.1</td>
<td>111</td>
</tr>
<tr>
<td>TaCl₄ (c)</td>
<td>-168.8</td>
<td>-168.8 ± 0.5</td>
<td>115</td>
</tr>
<tr>
<td>WCl₄ (g, c)</td>
<td>-98.7</td>
<td>-163</td>
<td>116</td>
</tr>
<tr>
<td>WCl₃ (c)</td>
<td>-82</td>
<td>-137</td>
<td>113</td>
</tr>
<tr>
<td>WCl₂ (c)</td>
<td>-71</td>
<td>-121</td>
<td>113</td>
</tr>
<tr>
<td>WCl₁ (c)</td>
<td>-38</td>
<td>-60 ± 3</td>
<td>113</td>
</tr>
<tr>
<td>ReCl₄ (c)</td>
<td>-63</td>
<td>-63 ± 0.8</td>
<td>117</td>
</tr>
<tr>
<td>UCl₄ (c)</td>
<td>-215.2</td>
<td>-251.2 ± 0.4</td>
<td>118</td>
</tr>
<tr>
<td>Br₂ (liq)</td>
<td>-52.8</td>
<td>-57.5 ± 1.0</td>
<td>119</td>
</tr>
<tr>
<td>Br₂ (liq)</td>
<td>-47.5</td>
<td>-41.5 ± 1.5</td>
<td>41</td>
</tr>
<tr>
<td>TiBr₄ (c)</td>
<td>-155</td>
<td>-147.8 ± 1</td>
<td>104,120</td>
</tr>
<tr>
<td>NbBr₃ (c)</td>
<td>-132.9</td>
<td>-132.9 ± 0.4</td>
<td>121</td>
</tr>
<tr>
<td>MoBr₃ (c)</td>
<td>-45</td>
<td>-74.5</td>
<td>122</td>
</tr>
<tr>
<td>MoBr₃ (c)</td>
<td>-41</td>
<td>-64 ± 5</td>
<td>123</td>
</tr>
<tr>
<td>MoBr₃ (c)</td>
<td>-29</td>
<td>-54 ± 5</td>
<td>123</td>
</tr>
<tr>
<td>TaBr₃ (c)</td>
<td>-143.0</td>
<td>-143.0 ± 0.4</td>
<td>121</td>
</tr>
<tr>
<td>WBr₆ (c)</td>
<td>-44</td>
<td>-92 ± 1</td>
<td>124</td>
</tr>
<tr>
<td>ReBr₃ (c)</td>
<td>-39.3</td>
<td>-39.3 ± 0.8</td>
<td>117</td>
</tr>
<tr>
<td>BiBr₃ (c)</td>
<td>-63</td>
<td>-63 ± 3</td>
<td>125</td>
</tr>
</tbody>
</table>

Perhaps time to promote the common carboxylic acids, alcohols, phenols, amines, and alkyl and phenyl halides to the category of “key compounds”.

In this connexion, it is encouraging to record new measurements of the heats of formation of several alcohols, carboxylic acids, phenols, and alkyl bromides. There remain, however, several disturbing gaps, coupled with a general need for confirmation of many of the data currently accepted. A
KEY HEAT OF FORMATION DATA

reliable value for methyl bromide is lacking, and the heat of formation of phenyl bromide is uncertain: Bjellerup's value for \(n \)-propyl bromide is inconsistent in relation to the "best values" available for ethyl bromide and butyl bromide. A new measurement of the heat of formation of benzyl bromide (from the heat of reduction by LiH/LiAlH\(_4\)) by Carson\(^{132}\) is in poor agreement with the value obtained by Benson and Buss from equilibrium studies\(^{132}\). Lacher\(^{133a}\) has recently reported that new measurements on the heats of hydrogenation of alkyl bromides are being made at Boulder, and that reliable values for methyl and ethyl bromide should soon become available.

A seemingly reliable value for methyl iodide is available from Carson, Carter and Pedley's measurements\(^{134}\) of the heat of reduction with LiH/LiAlH\(_4\). The same method has been applied to ethyl iodide and benzyl iodide\(^{132}\): however, the alkyl iodides remain for the most part badly defined in respect of their heats of formation. As regards alkyl fluorides, virtually no information is available except for the heats of hydrogenation of propyl and isopropyl fluorides, reported by Lacher and co-workers\(^{135}\).

CONCLUSION

This report is confined to compounds of key importance to experimental thermochemistry, and ignores all other aspects such as technological or theoretical importance. As such it is very limited, yet it is evident that there is ample scope for more complete and more precise re-investigation of many of the "bread and butter" data required by modern thermochemistry. No less important is a realistic appraisal of the uncertainty intervals attached to each item of key importance currently in use. In this connexion I am convinced of the need for a new critical compilation of thermochemical data, comparable to Circular 500 and available for general sale, and am informed that the task of revising Circular 500 is already under way, under the direction of Dr W. H. Evans.

I wish to express my thanks to W. D. Good, W. N. Hubbard, S. R. Gunn, W. H. Johnson, D. D. Wagman, W. H. Evans, G. Waddington, S. Sunner, D. Stull and J. D. Cox for helpful advice (and in some cases, access to unpublished results) in the preparation of this paper.

References

KEY HEAT OF FORMATION DATA

H. A. SKINNER