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INTRODUCTION

The experimental situation with regard to the electrical properties of the
transition metal compounds is, on the whole, rather unsatisfactory. In the
main this is due to the fact that single crystals are not readily prepared.
Thus, to date, the vast majority of the data result from measurements on
pressed and sintered or polycrystalline masses. As is well known, the inter-
granular structures can have a pronounced effect on the electrical properties.
Thus such data are not necessarily representative of the bulk material itself.
As a consequence, much time has been needlessly spent on devising theories
or explanations of effects which turn out to be spurious.

The approach taken in the present paper will be somewhat the opposite.
We will take a rather idealized model of a compound semiconductor and
siraply ask what are the various properties that one might reasonably expect.
We will see that such an attack gives, at first glance, several unexpected
results, which naturally lead to some new experimentation. In addition,
we take the point of view that results not contained within the framework
of this model should be carefully examined to ascertain that they are really
representative of the bulk material under study.

In orcler to make this article easily accessible to those not familiar with the
ideas of band theory, an attempt will be made to provide the necessary
background. Furthermore, we will avoid unnecessary mathematical detail,
keeping the chemical and physical basis of things in the foreground.

Since this article is to be devoted to a study of electrons, it is worthwhile
to ask how we might best describe them. It is well known that we may
assign an electron a wavelength A given by

h
=5 (1)

wlhere % is Plank’s constant and p is the momentum of the electron. To get
an order of magnitude let us ascertain the wavelength of an electron possess-
ing thermal energy, kT, where k is the Boltzman constant. Expressing $ in
terms energy E(p = 4/(2mE)) and setting E ~ k7T, we quickly find

h
A= (2mkT)172 2

A

where m is the mass of the electron.
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Speaking very loosely we can take this wavelength as a measure of the
spatial extent or size of the electron. If, for example, we now determine
the wavelength of an electron where the thermal energy is evaluated at
room temperature, we find this wavelength to be approximately 60 A. That
is, one might consider the electron as being spread over a volume approxi-
mately 60 A on a side.

You will observe that we have used the mass of the free electron in our
discussion thus far. We must examine this point. In fact, we now show
that in solids the free electron mass should not be used. What is the mass
of a particle? It is simply that property of a body which relates force, F, to
acceleration, a, that is, it is simply the proportionality constant in Newton’s
second law. The most important thing to remember about this relation is
that the force F must include all the forces acting on the electron. Consider
two cases: (1) an electron in a vacuum acted on by an electric field and
(2) an electron in a solid acted on by an electric field. In the first case the
sole force acting on the particle is the electric field and m is, of course, the
mass of the free electron. In the second case, however, we have a complica-
tion. Here the force must include not only the external electric field but also
all the forces due to the other electrons and nuclei in the crystal. Thus we
can write

Fcrystal -+ Felectric tield = ma (3)

where Ferysta refers to the forces originating from the other electrons and
nuclei of the solid. Again m is clearly the free electron mass. However,
this equation is of little use to us as we would really like to have a relation
between the acceleration of the electron and the applied external force, namely
the electric field. Now it turns out that this can be done. We may write the
preceding equation in a form resembling the free space equation

Felectric tiela = m*a (4)

where we have simply replaced the electron mass by m*, the effective mass.
In other words all the crystal forces have been lumped into the electron
effective mass. It turns out that it is possible for this quantity to be either
greater or less than the free electron mass. In fact, we will even see that it
can be negative. We will find this concept of effective mass useful ; however,
we must keep in mind that although it is a concept which allows many
discussions to be simplified, it is not an easy quantity to calculate. It is
clear, in fact, that to do this one must evaluate the crystal forces.

Let us try to get some insight into the factors determining the effective
mass. Suppose we consider a crystal of very large lattice spacing, and we
put an extra electron on one atom. Since the lattice spacing is very large we
know that it will be very difficult for the electron to move from one atom
to another. Therefore, on applying an electric field we would expect the
acceleration of the electron to be very small. Looking at our equation, we
see that this means that the effective mass would be consequently very large.
Thus we see that the effective mass is essentially a measure of how tightly
bound an electron is to an atom. In a solid, the core electrons of an atom
have very large effective masses, whereas the conduction electrons in a

408



ELECTRON TRANSPORT PROPERTIES

metal, for example, have effective masses of the order of the free electron
nmass.

Looking back to equation (2) for the “‘size” of an electron, we see that it
depends inversely on the square root of the mass. Thus as the mass, that is,
the effective mass, of the electron increases, its size will decrease. It is
convenient to remember that for an effective mass of approximately 100
electron masses the “size” of the electron is down to approximately one
lattice constant. We will see presently that when the effective mass of the
e.ectron gets this large it is preferable to drop the concept of the wavelength
for the electron and to treat it essentially as a classical particle localized on a
given atom.

We now wish to see in what types of crystal each of these descriptions
is proper and then we wish to see what electrical properties follow in each
case. In order to do the former let us consider the following thought experi-
ment (Figure 7). Consider a lattice in which we hold all the atoms rigidly

AE, Band states

AE,

- Trapped states

Figure 1

in position. Now add one additional electron to this crystal, placing it upon
a given atom. We may designate the energy of the electron in this case by
E,). We now want to show that there are two alternate sets of energy levels
available to the electron. We may see this as follows. Let us continue to
hold all the atoms of the crystal fixed in place but let us free the electron
from the constraint which forces it to remain on a given atom. Under these
conditions we know that all the sites in the crystal are equivalent and that
the proper quantum mechanical description for the electron is a state in
which the electron has an equal probability of being on any given site. We
know that when we solve this problem to find the energy of the electron, we
fird a whole series of states, the total number being equal to the total number
of atoms in our solid. The average energy of these states is equal to £p, and
the spread in energy is equal to the band width AEg.

To find the other set of states accessible to the electron we may reverse
the above procedure and hold the electron fixed on a given atom but allow
all other atoms of the lattice to move. We know that the additional charge
on the given atom will distort the surrounding lattice. It can be shown that
this distortion is able to trap the electron on the given site. The depth of this
trap is cdenoted by AET.

Now if we are to ask what is the proper description of the electron we need
only ask which are the lowest energy states available to the electron. From
Figure 1 we see that if the depth of the trapped state AEy is greater than half
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the band width AEg, the electrons will find themselves in the localized
trapped states. This is the situation shown in the figure. If the converse is
true, namely, if half the band width is greater than the depth of the trap,
the electrons will be found in the band states.

We might pause a moment to ask what physical factors determine the
width of the band. The band width is determined essentially by the overlap
of the wave function of an electron when centred on neighbouring atoms.
Thus, if the spacial extent of the electronic wave function is large, that is,
if the effective mass is small, we will find the overlap great and consequently
the band width will be large. Conversely, a large effective mass will lead to
a small band width.

Let us now state a few of the fundamental ideas with regard to the electron
transport properties of crystals. First, we know that it is one of the results
of quantum mechanics that a periodic lattice will not scatter electrons. Thus
the resistivity of a perfectly periodic lattice is zero. The resistance comes
about from structural defects, impurities, the vibrations of the atoms in the
lattice, etc. It is easy to see the temperature dependence of the resistivity
due to these atomic vibrations, for we know that as the temperature is
increased the magnitude of the vibration, and therefore the deviation from
perfect periodicity, increases. Thus we must expect the electrical resistivity
to increase with temperature. These ideas are proper when using a band
description for the conductivity. However, if the trapped states happen to
be the lowest energy states, then the conduction process may be treated
essentially as a classical diffusion problem. We will see later how to do this.

Consider now the thermoelectric effects, namely the Seebeck coefficient
o and Peltier coefficient 7. (These two coeflicients are related by the equation
o=m|T.)

We would like to set up a general method for calculating the Peltier
coefficient. From the definition we know that this coefficient is simply the
heat absorbed from an external reservoir when electrons are removed from
the material in such a way so as to maintain the temperature constant. Let
us now see how to calculate this heat. If we assume that the volume of the
material is maintained constant when the electrons are removed, we may
write the change in internal energy of our system

dE — (%? )NdS + (% )SdN (5)
Using the standard thermodynamic relations we may write
dE = T'dS + udN (6)
where p. is the chemical potential of the electrons. If we further write
dE = EdN @)

where E is the average energy of the electrons removed from the solid, we
see finally that

dQ = TdS = (E — p) dN (8)
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Remembering that the Peltier coefficient is defined per unit charge rather
than per particle we see immediately that

R E—p )

4

where ¢ is the electron charge.

What can we say in general about p. and E? Weknow that p, by definition,
is the change in free energy on adding an additional electron. Now on adding
an electron we get three contributions to the change in free energy.

(i) When an electron is added to the crystal, the energy is increased by
(Eo — AEr) in the case of the trapped states. (In the case of the band states
the increase in energy will depend on how full the band is when the additional
electron is added. In the case of low concentrations, that is, a nearly empty
band, the increase in energy will be essentially £, — AEg[2.)

(i7) There will be an entropy term, due to the entropy of mixing, given
by kT In (¢[co — ¢), where ¢ is the concentration of conduction electrons and
¢o is the: concentration of states accessible to the electron.

(1#7) Finally, there will be a contribution due to the magnetic structure.
This latter we will simply term AGy for the moment. (In the case of trapping
we are going to neglect the entropy change arising from the distortion
surrounding a trapped carrier. This is small under normal conditionsl.)
Thus we may write in the case of trapping

c

pw=FE; — AEr + AGy + kT In

Co— €

In the band case —AEr must be replaced by — (AEg/2).

We now want to see how these concepts on the electrical properties can
be applied to the transition metal compounds,

We may first examine the electrical properties in a material in which the
lowest set of energy levels are those of the band. Before going into this, we
might ask how bands arise in real crystals. Consider the classic example
of germanium. Here each germanium is bound to four nearest neighbours
by four covalent bonds. FEach covalent bond consists, of course, of two
electrons, one contributed by each germanium taking part in the bond.
If we now take an electron from one of the bonds and remove it to another
part of the crystal so that the interaction between the electron and the broken
bond is zero, we see that we have created a free electron and a defective bond.
This defective bond is commonly referred to as a hole. Now the electron
which has been removed from the bond can have some kinetic energy. Thus
a whole series of energy states are available to the electron starting from the
energy required to break the covalent bond on up. This band of energy
states formed from the electron so created is called the conduction band.
The band formed by the electrons in the bonds is referred to as the valence
band. Based on this picture, we might draw the energy level diagram for
the electrons in pure germanium as shown in Figure 2. -
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Thus far we have discussed only the situation where electrons come from
the valence band. However, there is another way to introduce free carriers
into the conduction band. If, for example, we replace an atom of germanium
by an atom of arsenic, we know that arsenic has one additional electron
outside of closed shells than has germanium. Therefore, this electron is not
needed in forming the necessary four bonds in the crystal. It is, therefore,
not as tightly bound as are the electrons in the covalent bond. Schematically
we may put in these levels as shown in Figure 2.

Conduction band Empty at 0°K
______________________ Impurity levels
7// Vaﬁ{c{/b/a{d//// e 1 0%

1111711/ /

Figure 2

We have just discussed the width of the conduction band in terms of the
kinetic energy possessed by the electron. Classically, therefore, there should
be no limit to the width of such a conduction band. However, quantum
mechanically one does indeed find only certain energy ranges of states are
permissible. This comes about essentially from the wave nature of the
electron, for when the electron has a wavelength equal to twice the lattice
spacing it cannot be propagated through the lattice due to Bragg type
reflection. We can understand the situation qualitatively if we consider an
electron initially at rest to which we apply an electric field. The electron
will be accelerated in the direction of the field and will increase in energy.
However, we have already seen that an increase in energy means a decrease
in the wavelength of the electron. As the wavelength decreases we begin
to get partial reflection of the electron due to the periodically spaced planes
of atoms. This can be thought of as a reduction of the net current in the
direction of the field or, in turn, as a reduction of the net velocity of the
electron. In other words, the acceleration of the electron is now opposite to
that of the electric field. As we continue to accelerate the particle the wave-
length gets shorter. We finally come to the point of total reflection, and we
therefore have a standing wave in the crystal equivalent to zero velocity
for the electron. Thus we have the unusual phenomenon that under the
application of an electric field an electron increases in velocity to a certain
maximum value and then decreases to zero. This phenomenon is commonly
discussed in terms of effective mass. When the acceleration is opposite to
that of the electric field, one describes this in terms of a negative electron
effective mass. Normally one finds that in the lower half of the band the
effective masses are positive, whereas in the upper half of the band, in the
higher energy states, the effective masses are negative. These negative

412



ELECTRON TRANSPORT PROPERTIES

effective masses will play a very important role in the electrical properties
of the transition metal compounds.

We might consider briefly those properties of the crystal which help in
determining the width of this band. We have already mentioned one factor,
namely, the overlap of the electron wave functions on neighbouring atoms.
Ir. addition, the degree of order in the crystal is important. At absolute zero
where atomic motions are at a minimum, the band width is at its maximum.
As we go to higher temperatures, the atomic vibrations increase and the
band width decreases because of this increased disorder. In most semi-
conductors where the bands are very wide this decrease is not observed.
We will presently see why. Another form of disorder is that related to
the magnetic properties of the crystal. At absolute zero where we might
hzve a perfect ferromagnetic lattice, the band width is a maximum. As
we approach the Curie point, the band width will decrease because of the
spin disorder. It is thus possible that the proper description of the electrons
might change from the band states to the trapped states on going through
the Curie temperature.

We now ask how the energy levels of the band will be populated by the
electrons. For the cases that we will consider, the density of conduction
electrons will be small, and therefore we can use classical statistics. This
means that the number of particles »; in any energy level E; will be pro-
portional to the exponential

ny ae~Ei/kT (10)

The important thing to observe is that if the energy of a particular level is
say 4 or 5 times kT, that level only has a very small chance of being occupied.
Thus we can conclude that only those levels within several kT of the bottom
of the conduction band will be of interest to us.

TRANSPORT PROPERTIES IN A BROAD BAND

We are going to consider two cases now, one case where the conduction
band width is very large compared to £7, and the other where the band
width is of the order of k7. Let us treat the broad band first. This is the
commor. case. We briefly review the properties here so that an appropriate
comparison may be easily made with the other cases. The conductivity is
simply proportional to the number of carriers in the band times the mobility
of the charge carrier, the mobility being defined as the velocity of a carrier
under the application of unit electric field. We have already seen that the
number of particles in the conduction band will be some exponential function
of the temperature, and we also can say that, in general, the mobility p
of an electron will decrease with increasing temperature. We have seen, for
example, that the increase in the atomic vibrational amplitudes with
ternperature will have this effect. Therefore, we might write the conductivity
in the following form

In the case of a pure material where the electrons in the conduction band
can come only from the valence band, E is the energy separation between
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the top of the valence band and the bottom of the conduction band, the
so-called energy gap. If the carriers in the conduction band arise from the
impurities, £ is the energy separation of the impurity levels from the bottom
of the conduction band. Clearly the temperature dependence of the mobility
will be marked unless £ 2 2kT.

Let us now examine the behaviour of the Peltier coefficient in this limit
of band width large compared to k7. If we measure £ from the bottom of
the conduction band, that is, if £ is the average kinetic energy of the electrons
removed, we may approximate the Peltier coefficient

w:l[EMkme‘ J (12)
e co— ¢

We have neglected any magnetic contributions. These will be discussed
later. Now in equation (12) £ is the average kinetic energy of the electrons
leaving the crystal. This 1s not necessarily the average kinetic energy of the
electrons in the conduction band. For example, suppose the high energy
clectrons have very small mobility, that is, they have a very small velocity
under the influence of an electric field. In this case most of the current
would be carried by the low energy electrons and E would be correspondingly
low. It turns out that for wide band semiconductors we can write

E = 4kT (13)

where the constant 4 is only a function of the scattering mechanism for the
electrons. Itis usually a number of the order of unity.

It remains to examine the second term in the expression for the Peltier
coefficient. Using our previous ideas we can give a rather simple argument
which leads to essentially the correct answer. The meaning of ¢ is clear.
This is simply the concentration of free electrons in the conduction band.
Now ¢, is concentration of states accessible to the electrons. We can roughly
approximate this quantity from the spatial volume associated with an
electron. We have already seen that this is

13
3
X = i) (14
¢o 1s then roughly the reciprocal of this quantity divided by N, the total
number of atoms. For concentrations ¢ much less than ¢, we may neglect ¢
in the denominator of the logarithmic term in equation (12). We can finally
write

kT ch3 -
wz—g{A—ln m} (15)

This is very close to the exact expression. The exact expression for the
Seebeck coefficient a(={(n/7")) is

k ch3
LS 7 1
* e{ n2(27rm*kT)3/2} (16)
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It should be remarked that the argument of the logarithm is always less than
unity. Thus this term gives a positive contribution to the Seebeck coefficient.
We see that the temperature dependence of the Seebeck coeflicient comes
about from the explicit dependence in the denominator of the logarithmic
term or from the implicit dependence in ¢, the concentration of free carriers.

The fact that the Seebeck coefficient increases as m* T increases has a
rather simple explanation. The logarithmic term is essentially the entropy
of mixing. Increasing m* T increases the total number of states available to
the electrons. This has the same effect as lowering the concentration. Both
of these effects increase the entropy of mixing.

TRANSPORT PROPERTIES IN A NARROW BAND

Let us consider now what happens when the width of the conduction band
becomes of the order of k72, 'We have previously said that energy levels
in the upper half of the conduction band behave as if they had a negative
mass, that is, electrons in these states are accelerated in the direction opposite
tc the electric field. In the normal wide band semiconductors one does not
need to worry about these states of negative mass for they are many, many
k 7" above the bottom of the band, and are therefore not occupied. However,
with a band width of the order of k7, we recognize now that energy levels
even at the top of the band will be partially populated. Thus we are going
to have to ask what are the consequences of having electrons with both
positive and negative effective masses.

Consider first the electrical conductivity, We make the assumption to
start with that the band width is extremely small compared to k7. This
means ~hat all the energy levels in the band are equally populated. Thus
we would expect to have as many electrons of positive mass as of negative
mass. 1f we now apply an electric field to this solid, we easily see that the
total current flow would be zero for there would be as many electrons flowing
in the cne direction as in the other. Thus we see that the conductivity goes
to zero as the band width over kT goes to zero.

We can get an expression for this conductivity rather easily. As we have
just seea, the dominant effect is the cancellation of carriers because of the
two signs of effective masses. Therefore, we might say that the conductivity
is roughly proportional to the difference between the number of carriers
in the bottom half of the band and the number in the top half. We can easily
estimate this ratio.

To do this we assume that the average energy of the states of positive mass
is AEg/4 and the average energy of the state of negative mass is (3/4)AEp.
This is shown in Figure 3. Then we may write that the ratio of the number

States of negative mass
Average energy:= 3/4 AEg

States of positive mass
Average energy= 1/4 AE,

Figure 3
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of electrons in the two groups of states is

~ AFp AE:
N. ¢ 4T ALp
— = e = ¢ 2kT 1
N T BB (17
. AkT

where N refers to the number of electrons having a positive effective mass.
Then, it follows that

Ny — N__ ¢+AEp2kT —1 _  AEg
Ny - N_  etAEn/2kT -1 4kT

(18)

The latter equality follows, of course, when the exponent is small. Thus we
see that ¢ behaves qualitatively as we expected.

Now let us examine the Peltier coefficient as the band width goes to zero.
We can do this most simply from equation (12). Consider first the term E.
As we have seen, E is the average kinetic energy of the electrons contributing
to the current. However, as the band width goes to zero, this average kinetic
energy must obviously also go to zero. Thus £ vanishes in the limit of very
narrow band width. Looking now at the second termin the Peltier coefficient,
we have seen that as the band width gets small, the effective mass increases.
Thus the quantity in the denominator will increase. Now the total number
of states available to the electron obviously cannot exceed the number of
atoms in the crystal. Therefore, as the band width becomes narrower we
quickly reach a point where the number of available electron states is equal
to the number of atoms in the crystal. This means that ¢, becomes essentially
unity. Thus we may write the Peltier coefficient for a narrow band material

kT c
7= — -—-In
e 1 —¢

(19)

Finally, it might be interesting to mention the result for the electronic
component of the thermal conductivity. If we go through the calculation?
we find that the thermal conductivity K is

3

K~ (ngTB) (20)

Itis easy to understand this result qualitatively. For in the limit of zero band
width all the conduction electrons have the same energy independent of
temperature. Therefore, remembering that thermal conductivity is measured
at zero current, we see that no net energy or heat can be transferred. An
interesting point here is that the Wiedemann-Franz ratio (K[/¢T") goes to
zero as the band width goes to zero.

These results involving the thermal conductivity have not yet been
verified experimentally.
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TRANSPORT PROPERTIES IN THE TRAPPED STATES

Having discussed the broad band and narrow band treatments of the
transport properties, we may now consider the case where the charge
carriers are trapped. First, let us discuss the particular kind of trap under
consideration. When we put an electron, a charged particle, on a given
atom in the crystal, this tends to distort the surroundings, both by virtue
of the additional charge and by virtue of the fact that the size of the atom
is changed. Now we postulate that this particle cannot move unless in some
way the distortion can be carried along with it. From a quantum mechanical
point of view, the charge carrier can only move if the site on which the
particle rests and the site to which the particle is going are degenerate with
one another, that is, if they possess the same atomic configurations. This
is akin to the familiar concept of resonance between two degenerate states.
This equivalence can occur in an infinite variety of ways. For example,
ore can completely remove the distortion from the site of the charged carrier
itself, thus making the initial and final site equivalent. Or one can create
an atomic distortion around the final site identical to that which exists at
the initial site. And finally more generally, the distortion can be partially
removed at the initial site and a corresponding distortion created at the
final site. If we now consider that the forces involved in displacing the atoms
are of zn elastic nature, and if we consider that the force constant of the
atoms surrounding the charge carrier is equal to £ and the force constant
around the final site is equal to &', we may easily write down the work3
necessary to make the two sites equivalent. A schematic representation of
the situation is given in Figure 4. The depth of the well on the left, AEr, at

e
'

it Final
i

Figure 4

the site of the charge carrier, is equal to 1/2 kxo2 where x, is the displacement
of the nearest neighbouring atoms. If we now alter this displacement to a
value ¥" and create an equal displacement x” at the final site, we must do an
amount of work

1 1
w = 2k(x’ — x0)2 + Qk x'2 (21)
Now we postulate that the mechanism of motion will be that requiring
the minimum value of this work. Thus if we minimize this work with respect
to x" we find for the minimum value

1 Y -~ Y
in == 2 = LA g
Wmnin, 9 kxo i y AETI ¥ (22)
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where y = k’[k. 'We see for example that if the force constants are equal the
activation energy is equal to halfthe trapping energy. In practice oneactually
expects that the two force constants will be fairly close to the same value.
In what follows we will simply assume this. This quantity wmin. then
represents the activation energy for the particle to jump to a neighbouring
site. We now postulate? for the frequency of a jump

v = po¢~@min, /KT (23)

The quantity v, is normally found to be of the order of the optical mode
frequencies of the crystal, that is approximately 1013, The activation energy
can range all the way from zero up to something of the order of 1 e.V.
Using this expression for the jump frequency we can find the electrical
conductivity. From the Einstein relation we have

ne2D
= _—_ 24
T (24)
where 7 is the number of carriers per unit volume and
D = Ba?v (25)

B is a structure dependent parameter, « is the lattice constant and v is given
by equation (23). Thus we may finally write the conductivity

203,42
o= "ik%‘i voe=wmin kT (26)

We see that the conductivity has two separate dependences on temperature.,
It should be pointed out that there is actually a third, for as we shall see, the
magnetic properties give an additional temperature dependence.

Let us go on now to the Peltier coeflicient for this type of compound.
Again we must consider the same two terms as in previous cases. The first
term £ represents the average energy lost by the solid when a carrier leaves.
What is this quantity in the trapping limit? When a particle leaves there is a
decrease in energy of (E, — AEr). There is an additional effect that comes
in if the two force constants are not equal; however, as this term is normally
small we will not discuss it further here. Thus

E=F, — AFr

and therefore

4

w:l{E—p,}:fﬂln (27)
4 e

Co — C

We see therefore that the activation energy for jumping does not enter,

We must reserve discussion of the Peltier coeflicient for a moment in order
to examine the significance of ¢ and ¢, in compounds where trapping occurs.
In order to see the problem clearly, let us examine the situation in a real
compound. We will choose Li;_;Ni;_;O. Weassume that for each lithium atom
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added to a crystal one of the nickel ions will be converted from divalent nickel
to trivalent nickel. This implicitly assumes that the lithium has a valence of
plus one and the oxygen remains minus two. At very dilute concentrations
and at very low temperatures, it is clear that the trivalent nickel will be on
sizes nearest neighbours to a lithium atom. This arises because the lithium is
effectively a minus charge in the divalent lattice whereas the nickel plus three
represents a positive charge in this lattice. Thus there will be a binding
between the impurity or the lithium ion and the hole on the nickel plus
three. As the temperature is increased we will expect some of the holes to
be torn free of the lithium sites. By free we mean that the hole has been
removed sufficiently far from the lithium so that there is no longer any inter-
action between it and the lithium. In practice this probably means that the
hole has been removed to a distance several lattice constants away. A hole
once free is now able to wander at random throughout the lattice provided,
of course, that the appropriate activation energy for a jump is supplied each
time. Under these conditions of very dilute concentrations the meanings
of ¢ and ¢, are the normal ones, namely, ¢ is the number of carriers which
has been freed from the impurity sites, and ¢, is the number of sites in the
crystal available to these charge carriers. To get ¢o we must remember
that the impurity sites are not available to the charge carrier nor are those
sites immediately surrounding the impurity. However, at dilute concentra-
tions ¢, is effectively unity. When we go to higher concentrations we immedi-
arely run into a problem. For the sake of discussion, let us go to a very high
concen-ration, say 20 per cent lithium. At this concentration 95 per cent
of the nickel atoms in the crystal have at least one nearest neighbour of
lithium. Therefore, it no longer makes any sense to talk about the freeing
of carriers from an impurity site. So it is clear that this concept needs to be
modified. Consider a more moderate concentration of say 3 per cent. It is
easily shown that 35 per cent of the nickel ions in the crystal have one nearest
nzighbour of Li. Furthermore, 10 per cent of the nickel ions have two
nearest neighbours of Li. Now if' 35 per cent of the lattice sites possess one
lithium nearest neighbour, it is not difficult to believe that at this concentra-
tion it is possible for an electron to travel throughout the lattice, always
traveliing on sites possessing a single lithium neighbour. We need to make
oae further assumption. We assume that the electrons will always try to
have the maximum possible number of nearest neighbours of lithium. This
simply allows the electron to achieve its minimum electrostatic energy. This
leads us to the following picture of the conduction process at high concentra-
tion. For concreteness we will discuss the 3 per cent concentration. At
absolute zero all of the charge carriers will be on sites possessing two or more
lithiurr. neighbours. Now we have already seen that the sites possessing one
nearest neighbour form continuous paths. However, it is easily shown that
those sites possessing two nearest neighbours do not have this property. Thus
this set of states cannot carry a current. However, as the temperature
increases, some of the electrons will be excited to higher energy states,
namely, to the nickel ions possessing one nearest neighbour. These electrons
can carry a current. As the temperature increases further some electrons
will be excited to even higher levels, namely to that set of levels possessing
no nearest neighbours of Li. Thus we have essentially two parallel paths of
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conduction. With this information as background, we may now re-examine
the Seebeck coefficient. In the interest of simplicity we give an argument,
which although not completely correct, does give one a proper feeling for the
situation and leads to the correct result. As the temperature is increased,
we have seen that the concentration of free carriers will increase. This tends
to decrease the Seebeck coefficient. However, as the temperature is further
increased, the electrons have available to them not only the sites possessing
one lithium nearest neighbour, but also the sites possessing no lithium neigh-
bours. Therefore, we see that as the temperature increases, ¢, increases
causing « to increase. Finally, at very high temperatures ¢, should be
simply equal to 1 — ¢, and the Seebeck coefficient becomes independent of
temperature.

Finally, let us consider those factors which tend to influence the activation
energy for a jump. We have seen that the activation energy is essentially
proportional to the square of the displacement of neighbouring atoms
surrounding a trapped carrier. Thus we are reduced to finding those factors
which influence the displacement of the neighbouring atoms when the
valence of the metal ion is changed. From Figure 5 we see two possible

(a) (b)

Figure 5

situations. In the first case we see that the anions are just at the point of
touching. Thus if we substitute a much smaller atom in the metal site, the
surrounding lattice really cannot distort very much. As a result we expect
a small activation energy for jumping. On the other hand, in the second
case shown in the figure the distortion is not inhibited by such considerations.
Therefore we may conclude that the activation energy will be large for
materials in which the radius of the cation to the radius of the anion is large.
Thus we would predict that the activation energy for MnO, CoO, NiO
should decrease in that order. In addition, we would make the same
prediction as one goes from MnS to MnSe. Both of these predictions are
borne out by experiment.

INFLUENCE OF MAGNETIC PROPERTIES

Up to this point the magnetic properties of the material have not been
discussed. We now wish to examine their possible effect. In discussing the
jump frequency of an electron from one site to another, we assumed that the
particle would jump when the atomic configurations surrounding the initial
and final site were equivalent. However, this is not quite so. For Anderson3
has shown that the transition probability for an electron to jump between
neighbouring ions is strongly dependent on the relative orientation of the
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net spin of the atom. In fact, in the limit of large spin, he shows that the
transition probability is proportional to the cosine of half the angle between
the spins. Thus, in this limit, the transition probability between anti-
parallel io1s is zero and between parallel ions is unity, and we can easily
sec qualitatively the behaviour of the conductivity. At absolute zero, if we
have a perfect antiferromagnetic state, the conductivity will be zero. As we
increase in temperature we have two effects which simultaneously tend to
increase the conductivity. First, due to the demagnetization with tempera-
ture more and more atoms are found having parallel spins. This means that
more jumps are possible. In addition, due to the increase in temperature
more carrizrs will possess the necessary activation energy for a jump. Thus
we may expect the temperature dependence below the Curie point to be
faster than the simple exponential due to the hopping. However, above the
Curie temberature where the spins are randomly oriented, we expect no
further m:gnetic contribution. Therefore, the effective activation energy
should appear to be less. This is in fact what one does find experimentally.

While we are on the point of the activation energy for conduction, it is
worthwhile to ask how this activation energy changes on going through the
Curie temperature. We have seen that the activation energy for conduction
is related to the elastic constants of the crystal. We also know experimentally
that the elustic constants in a magnetic material do not suffer discontinuous
charges on going through the Curie temperature. (Although it is true that
there is an effect in the vicinity of the Curie temperature this is due to the
movement of domain walls and is not a bulk property.) In view of this, we
do not expect that the activation energy for conduction should change at the
Curie temyerature. It should be pointed out, however, that there are some
data whicl. appear to contradict this statement. Several workers8: 7 have
found discontinuities in the conductivity curve for nickel oxide in the
vicinity of the Curie temperature. However, on examining this situation
carefully, vre conclude that this effect is probably not related to the Curie
ternperature. For one thing, one finds that the temperature at which this
break occu s varies by over 100° from sample to sample. One can certainly
not expect that the Curie temperature will vary so strongly. Furthermore,
one finds that this effect disappears upon the addition of a small quantity of
Li, wherea; the magnetic properties are essentially unchanged. Thus one
must attribute this discontinuity to some impurity or more likely to some
property of the nickel vacancies which are normally found in this lattice.

Finally, let us discuss the effect that the magnetic properties might have
on the Seel eck coefficient. In this case the possibility that a given atom can
be in a nwnber of different spin states gives an additional contribution to
the chemic: 1 potential. Itisnot easy to get the general form of this expression ;
however, the two limits are simple. At 7 = 0, all moments are rigidly
fixed so tha : the addition of an electron does not alter the magnetic contribu-
tion to the entropy. On the other hand, above the Curie temperature where
the moments are random, it is easy to show that the change in entropy on
adding a carrier is

250 + 1

ASy — kln2r !t
M ST

421



R. R. HEIKES

where s; and s» are the spins of the two types of atoms involved. For NiO,
where s = 3/2 and s; = 1, we get a contribution to the Seebeck coefficient
of the order of 25p.»/°C. Thus we can say that this contribution is zero at
T = O rising to a constant value of 25p.v/ °C at and above the Curie tempera-
ture. Such a contribution is normally negligible.

CONCLUSION

These simple ideas are capable of giving us a rather good picture of the
transport properties of transition metal semiconductors. In the trapping
region the situation has already been sufficiently studied experimentally so
that we may have some confidence in the results. In the narrow band
region much experimental work remains to be done in order to have a clear
picture.
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