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The study of the Raman effect has yielded much important information,
useful both for chemistry and for physics. The study of the resonance Raman
effect can contribute not only to the extension of the technique of Raman
spectroscopy, but also to an investigation of the nature of the interaction of
light with matter.

The Raman effect can be satisfactorily described and the principal
parameters interpreted in terms of both the classical and the quantum theory.

In the classical theory, the intensity of the Raman line (I) is determined by
the polarizability derivatives with respect to the normal nuclear co-ordinate
¢,.* and by the amplitudes of the vibrations of the nuclei. The intensity of
the fundamental (I,) will depend on all the components of the tensor «'t,
and for the simple case will be equal to the square of the largest component.

In quantum theory, the intensity is expressed in terms of matrix elements
of the polarizability «,, where 0 and n denote the initial and the final
vibration quantum number.

As has been shown by Placzek, when the exciting frequency » is far from
an electronic absorption band of the molecule, v,, «'qy;=—=d,y, where g4, is the
Oth amplitude of nuclear vibrations. The polarizability derivative and «,, are
related to the parameters of the electronic excitation levels, which may be
determined from the electronic absorption spectrum. The intensity I is
related to v not only by the presence of the »* factor, but also due to the
dependence upon v of &’ or «,y, respectively.

The dependence of the polarizability of the molecule upon the nuclear
co-ordinate is fairly complicated. It appears reasonable, therefore, to con-
sider, on the basis of the simplest semi-classical theory, the dependence of
separate terms in the polarizability formulae upon the co-ordinate g¢.
Presented below are the results obtained by the author and L. L.
Krushinskii! 3.

We shall assume that the polarizability is given by the expression:
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where f, is the oscillator strength calculated from the absorption band area,
v, is the frequency of the absorption band maximum in cm™, vy, is the
attentuation coefficient, z and m are the electron charge and mass respec-
tively, and ¢ is the velocity of light. The summation is made over all the
electronic excitation levels e.

Equation (1), as well as all those derived from it, could be written for every

Cartesian component of «, using the corresponding f,,, f,, or f, values.

*The subscript m denoting normal vibration will be omitted hereafter.
1The derivatives of polarizability (a) with respect to ¢ are denoted hereafter by primes,
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The f values may be replaced by the squares of matrix elements of dipole
moment transition, (M, )? constructed from total wave functions.

In order not to distract attention from our main point, we shall confine
the present treatment to simplified expressions. '

The polarizability derivative, (g«x/dq)o, is to be found by differentiating
equation (1), provided v, and f, are the functions of the nuclear co-ordinate ¢
(see Shorygin and Krushinskii?):
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The second derivative, which is proportional to an overtone intensity
(1), is given by:
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The terms in the denominators including the attenuation coefficient may
be neglected in equations (2) and (3) for regions beyond an absorption band.

Equation (2) replaces the dependence of the polarizability upon the
co-ordinate, which guarantees production of the Raman effect, by the
dependence of an electronic transition frequency and of an oscillator
strength upon the co-ordinate. The dependence of M, upon ¢ is considered
to be linear in the first approximation:

My, () = (My,)o (1 + ng)

where the coefficient 7 is most likely to be within the range of 4 2A-1,

The dependence of v, upon ¢ can be estimated from the potential curve of
an electronic excitation level E(g), particularly from its slope at the point
corresponding to the nuclear equilibrium in the ground state, i.e. from the
(8v,/8¢)4 The slope increases with the increase in variations of the value of
the mth normal nuclear co-ordinate, A, , in the 0—e electronic transition.

It will be noted that the greater the value of A, , the greater will be the
width of vibrational structure of an absorption band (corresponding to the
mth normal vibration), and the greater will be the contribution of the
corresponding electronic level e to the intensity of the Raman line5. The
derivatives (3v,/3¢), should be in the range from 0 to —100,000 cm—* A-1in
most cases. Typical potential energy curves E(g) for the ground and the
excited electronic states are presented in Figure I. The vertical arrow shows
the incident light quantum, which is here much less than that absorbed by
the molecule during the so-called Franck—Condon transition.

In the binomials summated in equation (2), either the first term containing
f, or the second containing v,’ could be dominant. If the terms are of
different signs, they may partially or entirely compensate each other. The
first terms are most likely to dominate when v< v,, L.€. in regions remote from
resonance. With the increase of v, the second terms should increase more
rapidly than the first ones, and they are likely to dominate under usual
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conditions of excitation, especially when », is not great. This is confirmed
by the following facts:

(a) by the form of the I = f(v) dependence;

(b) by the presence in the Raman spectrum of normal vibrations which
may be observed in the vibrational structure of an absorption band;

Efq)

Figure 1. Typical potential energy curves
illustrating the dependence of v, upon ¢

(c) by the fact that the intensity of the lines of valence vibration depends
on frequency to a greater extent than does the intensity of deformation
vibrations.

The second terms should contribute much more to the dependence
I =f(v) than the first ones. Indeed, in the regions far from the resonance,
where the first terms are more important, the factor »* is dominant, and the
dependence of «’ upon » can be neglected altogether; the dependence of «’
is essential for regions near resonance, where second terms should dominate.

When the incident frequency v is near to an absorption band and the
second term is dominant, we will have instead of equation (2):

2 ’
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The intensity will depend on the square of modulus, | &’ |2.

Placzek in his theory introduced the dependence of M|, upon g only for
regions near an absorption band; on the other hand, he supposed that
factors equivalent to the ‘“‘second term” of the semi-classical theory were
altogether outside the scope of his ““theory of the polarizability”4. However,
the dependence of the polarizability upon the nuclear co-ordinate, and,
therefore, the production of the Raman effect, is due to both terms for every
region either near to or far from resonance.

Figure 2 illustrates equations (1) and (4). It presents the parameters of the
classical model of a diatomic molecule with an attenuation constant which is
of considerable size. The following values are brought together:

(a) the absorption curve, € = f(»); :
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(b) the real part of the polarizability, Re a(v);

(c) vectors (broken arrows) representing the complex polarizability « on
complex planes for a number of values of v (each value shown by a vector
origin on the frequency scale); the vector projection on the x-axis is the real
part of the polarizability, and the projection on y-axis—the imaginary part
(the vector of an incident wave field coincides with the x-axis) ;

(d) vectors of complex derivatives of the polarizability (solid arrows) for
the same values of the exciting frequency v; (« and «' are drawn on an
arbitrary scale).

Figure 2. Complex values of o« (broken
arrows) of o’ (solid arrows) for various
regions of an absorption band

Values of a’ are imaginary for the twov values, limiting an absorption band
half-width, and are real in the absorption band centre (v~v,) as well as in
regions beyond an absorption band. The quantum model treatment yields
similar results?,

For regions beyond an absorption band, the Raman effect may be
considered a result of amplitude modulation of an induced moment vibra-
tions; in the centre of an absorption band the phase modulation is pre-
dominant. When the phase modulation is great, strong overtones are likely
to appear.

Figure 3 represents complex polarizability values for the equilibrium (4B
vector) and for the two extreme values (AC and AD) of the vibrating nuclei
co-ordinate in the case of resonance (v~v,). The DC vector corresponds to
the double amplitude of the polarizability modulation, i.e. to 2«’g,, or, more
precisely, to the difference (Aa) of the two polarizability values correspond-
ing to the two extreme positions of the nuclei. The intensity of the funda-
mental is represented to a closer approximation by this difference than by the
polarizability derivative (i.e. 2aqy,). The FB vector, which is the difference
of the BC and DB vectors, corresponds approximately to the «’/(gy,)2% value
and determines an overtone intensity, I,. In order to simplify the interpreta-
tion of Figure 3, it can be assumed (but only conditionally) thatv, and notv,,
is changing with the nuclear vibrations?.

When the attenuation constant y, is great (much greater than the nuclear
vibration frequency w), the simplest classical model and the corresponding
| &’ |go; may be used to describe the Raman effect for regions both beyond
and inside.an absorption band. In the case of a smaller attenuation constant,
the model may be applied only when the frequency v is located heyond an
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absorption band. The treatment can be somewhat extended, however, in the
latter case, should the contribution of higher polarizability derivatives be
taken into consideration. Then, instead of one term containing «’, we shall
have the series:

5
al 401 + bal!lgisl + Ca“m%l + .

For the simple classical model, 4 = 1/8, ¢ = 1/192. If the more correct
expression [uyx(q)u;dg is used, where w, and «, are the nuclear wave func-
tions, then b = 1/2 and ¢ = 1/8. The presence of higher derivatives deprives
the classical formulae of the simplicity which is the main advantage of the
classical model. The contribution of higher derivatives may be included in
more compact form, though incompletely (with the coefficients b = 1/6
and ¢ = 1/120), if the intensity is taken to be proportional, not to a’g,,, but
to the difference of the two polarizability values corresponding to the extreme
positions of the vibrating nuclei.

Figure 3. Complex values of the polarizability of a molecule
for equilibrium (4B) and for two extreme positions (AC and
AD) of vibrating nuclei

A

Further improvement can be made if the influence of the vibration
frequency w, and of the attenuation constant y,, on the modulations of the
induced moment vibrations is taken into account. This can be done by
introducing a factor dependent on y/w.

The model considered above, though imperfect, may be used not only for
qualitative, but in some cases even for quantitative description. For the
further development of the classical theory, the more general solution of the
equation for electron motion* is to be found:

X+ 7x + v [1 + (o) x = keosvt

where y is an electron co-ordinate the quantum theory of the Raman effect
is based upon the Kramers—Heisenberg—Weisskopf equation, which includes
the contributions of every electronic level ¢, and every corresponding
vibrational sublevel ». By separating the nuclear and the electronic wave
functions in the Born—-Oppenheimer approximation, we obtain’2:

2 v
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*Frequency is expressed here in rad/sec.
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where v, is the frequency of an electronic-vibrational transition 0, 0— e,
M, is the matrix element of a dipole moment transition 0->¢, constructed
from electronic wave functions, and 4, the overlap integral for nuclear func-
tions, [#9(q) 49 (¢)dq (the subscript and the superscript denoting vibrational
and electronic quantum number respectively).

Written in this form, the equation can be readily analysed, since its para-
meters could be either calculated or at least evaluated. The equation
illustrates the contribution of vibrational sub-levels, and also the meaning of
the imaginary and the real part of o,. It will be noted that the expression
for a Raman line intensity should include | «q,|

For regions beyond an absorption band the imaginary part of «,, could be
neglected in equation (5). This cannot be done for regions inside the band,
but, in this case, one may confine the treatment to the contribution from
only one electronic level, and, moreover, M, could be considered to be
independent of ¢ {or of v) and placed before the sum:

vETl
Z m AOvAvl (6)

v
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Figure 4 illustrates equation (5). It represents qualitatively the contribu-
tion of various vibration sublevels of an electronic excitation level to the
oo0s %o1s and gy values for a non-resonance case (v<w,). This is done for a
molecular model, similar to that presented in Figure 2, in classical terms. I
should like to remind the reader that «g, defines the first overtone intensity,
I,. Vectors to the right and to the left of the vertical line represent the

v
7 .
6 - . _—
b I -] Figure 4. The contributions of
4 - vibration sub-levels of an electronic
] TS < excitation level to the matrix ele-
2 " ments of the polarizibility (eq,,
1F :“‘“’ og; and «y,) when the exciting
0 frequency is far from the resonance
%50 %o1 %02
(a) (b) (c)

positive and negative contributions of sub-levels (quantum numbers » vary
from O to 7). Since, in this case, v is located beyond an absorption band,
these contributions will not contain the imaginary part. The so-called
Franck—Condon transition (in which the nuclear co-ordinate does not
change) corresponds here to v = 3. As seen from Figure 4, the absolute
contribution of the latter to «,, is about zero, whilst it is greatest to ogy
(Krushinskii and Shorygin?).

Figure 5 represents conditions near to resonance for the same model
(y, is large). Here the vectors on a complex plane correspond to the contri-
butions of the same sub-levels to «y;.

Now we will compare the parameters of the classical and the quantum
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models, At first sight they appear to be hardly comparable; thus, the
powers in the resonance denominators in the classical formula (equation (2))
are considerably higher. However, the resonance denominators in equation
(5) do not determine the dependence of «,, upon v immediately. The fact is
that, in the ‘“‘classical” equation (2), the summation is made only over
electronic levels, whilst in the quantum formula it is also made over all

v=0 vl

Figure 5. The complex contributions of vibration sub-

levels of an electronic level to the matrix element of the

polarizability ay, near to resonance (when the lifetime
of the excited state is small)

v=6

y=5 vs=4

vibration sub-levels v of electronic excitation levels. Overlap integrals 4,, in
equation (5), and, therefore, the corresponding contributions of sub-levels »
of an electronic level to oy, will have different signs, so that 24,,4,, = 0
(Shorygin')*. For »<w,, the resonance denominators corresponding to
various sub-levels v do not differ greatly, and the contributions of the sub-
levels could compensate each other, so that the sum will be about zero. With
the increase of v, the degree of compensation lessens, the sum of the contribu-
tions increasing more rapidly than the absolute value of a separate
contribution®. Thus, when » is not too close to v,, i.e. in cases beyond an
absorption band, the classical and the quantum formulae yield practically
the same intensity values and the same dependence of the intensity upon the
frequency, the classical formula being more simple.

The presence of the second term in the classical formula (the dependence
of v, upon ¢) corresponds to the fact that resonance denominators are different
for various sub-levels in the quantum formula. The introduction in equation
(2) of the first term (the dependence off, upon g) corresponds to the inclusion
of some variation in M, values for various sub-levels in the quantum theory.
The introduction of some additional indices » for M, could provide for
these variations; as the latter are not great, they could be neglected in most
cases, especially when v is not far from resonance?.

The agreement between the classical and quantum model parameters is
to be perceived in the following: the contributions (4,) of vibrational sub-
levels, located below the Franck—Condon level, to the matrix element of the
polarizability «y; is proportional to the polarizability value («;) for one
extreme position of the vibrating nuclei (g,,), whereas the contribution
(—A,), opposite in sign, of upper sub-levels is proportional to the polariza-~
bility value (o) for another extreme position (—gg;). The sum of the
contributions of all sub-levels is: 4; — 4, ~ }(a; — ).

As can be seen from equations (2)—(5), the Raman line intensities I; and
I, should increase with increase of v in the “before resonance” region (v <v,),

*Accordingly ? Agwdy, = 0 (see Krushinskii and Shorygin?® and Behringer®).
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and then decrease with further increase of v (when » v,). This has been
confirmed by experiment’. It should be noted that the position of the
intensity maximum may be slightly different from that of the absorption
coeflicient maximum.

In the Raman spectrum of a compound the relation I = f(»), even when
determined by one electronic excitation level, may vary considerably from
line to line. This could be caused by differences in the relative values of the
first and second terms in the binomials of equation (2). The intensity of the
lines of valence vibrations, when approaching resonance, should, in most
cases, increase more rapidly than that of lines of deformation vibrations.

As to the rate at which the intensity increases as v approaches an absorp-
tion band, it is moderate for I; and is slightly faster for I, when the attenua-
tion constant is large. Even in the case of resonance, however, an overtone
intensity should be much less than that of a fundamental (f; < I,), especially
when A, a change in equilibrium value of the normal nuclear co-ordinate
during electronic excitation, is small.

‘When the attenuation constant is not too large, I; increases rapidly as
resonance is approached, while I, increases much faster, so that for true
resonance J,/I; is much greater than that in the previous case (for which y
is large).

Thus, in the resonance region, the overtone intensity should increase with
a decrease in the attenuation constant more rapidly than the intensity of the
fundamental, so that they may turn out to be of the same order. The intensity
distribution, therefore, tends to that which would be observed in resonance
fluorescence.

When the absorption band contour is caused primarily by the attenuation,
the difference between the polarizability for two extreme nuclear positions,
| Aa|, should not exceed 0-001 X ep,,. For p-nitro-N,N-diethylaniline
0-001 X €., = 25 A3, As evaluated from the intensity of the line of the
nitro group in the case of resonance, | Ax| proved to be of the order of
50 A3. Thus the attenuation cannot be considered a dominant factor, and y,
should be considerably less than 4000 cm 1.

For some nitro-compounds, the author and Ivanova? have observed the
narrow lines of the resonance Raman spectrum and the broad band of
fluorescence simultaneously.

Presented in Figure 6 are the absorption spectrum (broken line) and the
energy distribution in the emission spectrum (solid line) for 4-nitro-4'-
dimethylaminostilbene. Crosses mark the Raman lines of the compound
and of the solvent. 1340 is the line of the nitro-group; the arrow refers to
the exciting mercury line (22938 cm™1).

Study of the I = f(v) dependence has shown that both the Raman spec-
trum and fluorescence are connected with the same electronic excitation
level. The mean lifetime of the excited state 7, as measured from the fluore-
scence after-glow, was about 10~? sec. This value, however, is to be attributed
primarily to the lowest vibrational sub-level of the electronic excitation level.
The higher sub-levels, with a considerably shorter lifetime (probably of the
order of 10-19 to 10-13 sec), should account for the Raman effect. However,
should the resonance spectrum be a result of two subsequent acts of absorp-
tion and of emission, even such lifetime values, when a compound is in
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liquid state, would have been enough for lines to undergo considerable
broadening.

Since Raman lines remain narrow, they should be related to forced vibra-
tions (when y,,<w, such a classification is somewhat conventional).

The resonance emission spectrum will depend on the relations of the
following factors:

[

24000 22000 20,000 18,000 cml

Figure 6. Energy distribution in the emission spectrum of
4-nitro-4’-dimethylaminostilbene

(a) the half-width of the exciting band, I';

(b) the half-width of the vibration bands of the electronic excitation
level, 7,,;

(¢) The nuclear vibration frequency, w.

When y,, > o > I', the resonance Raman spectrum which occurs
corresponds to a ‘“‘stationary process” and is described by equation (2).

When o > y,, > I', the observed Raman spectrum corresponds to a
“non-stationary process”, and the intensity of a line is less than that given by
equation (2) (the discrepancies will increase as y[ew decreases; the phase of the
modulation of the induced moment vibrations should be retarded with
respect to that of the nuclear vibrations.

When y,, < I, resonance fluorescence occurs.

The resonance Raman effect differs from resonance fluorescence by:

(a) comparatively small vibration energy in the final state (low intensities
of overtones) ;

(b) independence of the band-width upon y,,;

(c) insignificant after-glow, and insignificant influence of the molecular
rotation on the depolarization ratio; low quantum yield; small influence of
intermolecular interaction on the band-width;

(d) dependence of the frequency of an emission line upon the exciting
frequency. :
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