HEATS OF COMBUSTION OF FIVE ALKYL PHENYL KETONES

M. COLOMINA, C. LATORRE and R. PEREZ-OSSORIO Instituto de Química Física, Serrano 119, Madrid, Spain

As a contribution to the determination of fundamental thermodynamic properties of pure organic compounds a group of alkyl phenyl ketones has been selected for study.

METHOD AND APPARATUS

The heats of combustion of the compounds were determined by burning the liquid alkyl phenyl ketones in oxygen in a bomb, at constant volume. The procedure is similar to that described by Prosen¹, followed by us in other studies².

Materials

The methyl, ethyl and propyl phenyl ketones were commercial products. The iso- or *tert*-butyl phenyl ketones were synthesized in this laboratory. The five ketones were purified first by vacuum distillation, in a column of fifty theoretical plates, and then by fractional melting, with an apparatus developed in this laboratory from a simpler device described by Nicholson³. The qualitative control of purity by heating curves, following the method of Skau, showed that these compounds were very pure.

EXPERIMENTAL RESULTS

The results of a series of calibration experiments using N.B.S. standard benzoic acid are given in *Table 1*. The tabulated data were obtained as in the following paper². The values of q_i were obtained from separate ignition experiments in which a standard mass of 8.30 mg of iron was burned (standard $q_i = 62 \text{ J}$).

Expt No.	Mass of benzoic acid (g)	$\Delta e_1 \ ({ m J}/\Omega)$	ΔR_{c} (Ω)	$\begin{pmatrix} q_{\mathbf{i}} \\ (\mathbf{J}) \end{pmatrix}$	qn (J)	$E_{\mathbf{s}}$ (J/ Ω)	Deviation from mean (J/Ω)
1 2 3 4 5	1.59823 1.59794 1.59979 1.60135 1.59822	19·2 19·2 19·2 19·2 19·2 19·2	0-299388 0-299233 0-299624 0-299945 0-299342	$ \begin{array}{c} 61 \cdot 7 \\ 62 \cdot 0 \\ 61 \cdot 8 \\ 63 \cdot 8 \\ 62 \cdot 4 \end{array} $	$ \begin{array}{r} 1.7 \\ 1.9 \\ 2.0 \\ 1.9 \\ 2.7 \\ \end{array} $	141294 141343 141322 141313 141320 Mean, 141 S.D. of me	

Table 1. Data from calibrating experiments with benzoic acid

M. COLOMINA, C. LATORRE AND R. PEREZ-OSSORIO

In *Table 2* the results of five series of combustion experiments with the alkyl phenyl ketones are given. These data were obtained as in the following paper².

In *Table 3* the heats of combustion and formation of the five alkyl phenyl ketones are given. These data and their uncertainties were computed as in the following paper².

CONCLUSIONS

On comparing the heats of combustion of the alkyl phenyl ketones with the corresponding values for the liquid alkylbenzenes, reported by Prosen, Johnson and Rossini⁴, the following conclusions can be drawn.

Expt. No.	Mass of carbon dioxide (g)	${\Delta e_2 \atop ({ m J}/\Omega)}$	$\frac{\Delta R_{\mathbf{c}}}{(\Omega)}$	Q _{28°C} (J)	$\stackrel{q_{\mathbf{i}}}{(\mathbf{J})}$	$\begin{pmatrix} q_{\mathbf{n}} \\ (\mathbf{J}) \end{pmatrix}$	$-\Delta E_{\mathbf{B}}$ (28°C) (J/g of CO ₂)	$\begin{array}{c} Mean \ value \\ -\Delta E_{\rm B} \\ (\rm J/g \ of \\ \rm CO_2) \end{array}$		
	Methyl phenyl ketone									
1 2 3 4	3.62191 3.62318 3.63150 3.62991	24·4 24·4 24·4 24·4	0·302301 0·302359 0·303132 0·303011	42728·2 42736·6 42845·8 42828·6	63·4 61·5 64·2 62·4	$ \begin{array}{c} 2 \cdot 5 \\ 2 \cdot 1 \\ 2 \cdot 4 \\ 2 \cdot 4 \end{array} $	11779·0 11777·7 11780·0 11781·0	$11779.4 \\ \pm 0.7$		
Ethyl phenyl ketone										
1 2 3 4	3.51073 3.51625 3.51463 3.51244	23·4 23·4 23·4 23·4 23·4	0·301502 0·301935 0·301895 0·301670	42615•1 42676•3 42670•6 42638•8	$ \begin{array}{c} 62 \cdot 3 \\ 61 \cdot 4 \\ 61 \cdot 9 \\ 64 \cdot 0 \end{array} $	2.5 2.3 2.9 2.1	12120·1 12118·7 12122·4 12120·6	12120·5 土 0·8		
Propyl phenyl ketone										
1 2 3	3·41445 3·41632 3·41379	22.6 22.7 22.6	0·299881 0·300023 0·299922	42386·8 42406·9 42392·6	47·0 50·3 50·4	$2 \cdot 1 \\ 2 \cdot 1 \\ 2 \cdot 0$	12399•6 12397•7 12402•7	$12400.0 \\ \pm 1.5$		
Isobutyl phenyl ketone										
1 2 3 4 5	3.33339 3.34221 3.34344 3.33878 3.33968	$ \begin{array}{c} 22 \cdot 0 \\ 22 \cdot 0 \\ 22 \cdot 1 \\ 22 \cdot 0 \\ 22 \cdot 0 \\ 22 \cdot 0 \end{array} $	0.297763 0.298664 0.298686 0.298275 0.298421	$\begin{array}{r} 42086\cdot 1\\ 42213\cdot 6\\ 42216\cdot 3\\ 42158\cdot 5\\ 42180\cdot 5\end{array}$	$\begin{array}{c} 60 \cdot 9 \\ 61 \cdot 9 \\ 61 \cdot 1 \\ 61 \cdot 2 \\ 61 \cdot 5 \end{array}$	2.32.52.52.42.3	12606.7 12611.2 12607.7 12607.9 12610.6	12608·8 ± 0·9		
teri-Butyl phenyl ketone										
1 2 3 4	3·42902 3·42394 3·37080 3·36889	$ \begin{array}{c} 22 \cdot 6 \\ 22 \cdot 6 \\ 22 \cdot 2 \\ 22 \cdot 2 \\ 22 \cdot 2 \end{array} $	0·306826 0·306458 0·301694 0·301686	43367·2 43315·3 42641·8 42640·7	$ \begin{array}{c} 61 \cdot 7 \\ 61 \cdot 1 \\ 61 \cdot 4 \\ 62 \cdot 6 \end{array} $	$ \begin{array}{c} 4 \cdot 2 \\ 3 \cdot 0 \\ 3 \cdot 1 \\ 2 \cdot 3 \end{array} $	$ \begin{array}{c} 12627.9\\ 12632.0\\ 12631.2\\ 12637.9 \end{array} $	$\begin{array}{c} 12632\cdot 3\\ \pm 2\cdot 1\end{array}$		

Table 2. Data from combustion experiments with alkyl phenyl ketones

HEATS OF COMBUSTION OF FIVE ALKYL PHENYL KETONES

Compound (lig.)	$-\Delta E_{\rm B}$ 28°C	$-\Delta E^{\circ}$ 28°C	$-\Delta H^{\circ}_{ m c}$ 28°C	$-\Delta H^{\circ}_{\circ}$ 25°C		$\Delta H_{\rm f}^{\rm o}$ 25°C
	(kJ/mole)	(kJ/mole)	(kJ/mole)	(kJ/mole)	(kcal/ mole)	(kcal/ mole)
Methyl phenyl ketone	4147.39 + 0.89	4144.95 + 0.89	4148.71 + 0.89	4148.95 + 0.89	991.62 + 0.21	-34.06 + 0.25
Ethyl phenyl ketone	4800.90 + 1.05	4798.28 + 1.05	$\begin{array}{r} 4\overline{8}03 \cdot 29 \\ + 1 \cdot 05 \end{array}$	4803.66 + 1.05	$1\overline{1}48.10 \\ + 0.25$	-39.95 + 0.30
Propyl phenyl ketone	$5\overline{4}57\cdot36$ $\pm 1\cdot69$	$5\overline{4}54.66$ ± 1.69	$5\overline{4}60.83 \pm 1.69$	$5\overline{4}61\cdot32$ $\pm 1\cdot69$	$1\overline{3}05 \cdot 29 \\ \pm 0 \cdot 40$	$\stackrel{-}{\pm} \stackrel{+}{0.45} \stackrel{+}{45} \stackrel{+}{13} \stackrel{-}{\pm} \stackrel{-}{0.45} \stackrel{-}{13} \stackrel{-}{13}$
Isobutyl phenyl ketone	${6104 \cdot 19} \ \pm 1 \cdot 39$	$\overline{6101} \cdot 23 \ \pm 1 \cdot 39$	$6\overline{108}\cdot74\ \pm\ 1\cdot39$	$6\overline{109}\cdot36\ \pm 1\cdot39$	$1\overline{4}60\cdot17$ $\pm 0\cdot33$	$-52.62 \\ \pm 0.39$
tert-Butyl phenyl ketone	$6115 \cdot 54 \\ \pm 2 \cdot 26$	6112.57 ± 2.26	${}^{6120\cdot09}_{\pm\ 2\cdot26}$	${}^{6120\cdot70}_{\pm\ 2\cdot26}$	$1462.88 \\ \pm 0.54$	$\begin{array}{c} - 49.91 \\ \pm 0.60 \end{array}$

Table 3. Heats of combustion and formation of alkyl phenyl ketones

(a) The increments in the heats of combustion per CH_2 group added to the chain in the liquids methyl phenyl ketone and methylbenzene have the same value of 156.5 kcal/mole. This identity of increments in the heats of combustion per CH_2 group added to the chain is again reproduced in the liquids propyl phenyl ketone and propylbenzene with the same value of 154.9 kcal/mole.

(b) The increments in the heats of combustion per CH₂ group added to the chain in the liquids ethyl phenyl ketone and ethylbenzene have an unexpected difference of l kcal/mole: 157.2 kcal/mole and 156.2 kcal/mole, respectively.

(c) There is an important difference between the heats of isomerization for the liquid state at 25° C of the following reactions:

Isobutyl phenyl ketone \longrightarrow tert-Butyl phenyl ketone -2.7 kcal/mole

Isobutylbenzene \longrightarrow tert-Butyl benzene +0.2 kcal/mole

Finally, from the heat of combustion of benzyl methyl ketone, measured by Springall and Nicholson^{5, 3}, and our experimental results, the heat of isomerization of the following reaction for the liquid state at 25°C has been computed:

Ethyl phenyl ketone \longrightarrow Benzyl methyl ketone -3.6 kcal/mole

References

- ¹ E. J. Prosen, Chap. 6 in *Experimental Thermochemistry*, Ed. F. D. Rossini, Interscience, New York (1956)
- ² M. Colomina, R. Pérez-Ossorio and M. L. Boned. "Thermochemical investigations on methyl-substituted benzoic acids: I. Toluic acids". This Symposium, *Pure and Appl. Chem.*, **2**, No. 1–2, 137 (1961)
- ⁸ G. R. Nicholson, M. Szwarc and J. W. Taylor. J. Chem. Soc., 1954, 2767
- ⁴ E. J. Prosen, W. H. Johnson and F. D. Rossini. *J. Research Nat Bur. Standards*, **36**, 455 (1946)
- ⁵ H. D. Springall and R. T. White. *J. Chem. Soc.*, 1954, 2764